
Helen E Abud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996584/publications.pdf Version: 2024-02-01

HELEN F ARUD

#	Article	IF	CITATIONS
1	Milk of Monotremes and Marsupials. , 2022, , 595-605.		О
2	Modeling colorectal cancer: A bioâ€resource of 50 patientâ€derived organoid lines. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 898-907.	1.4	9
3	Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death and Differentiation, 2022, 29, 2288-2302.	5.0	6
4	Intestinal stem cell aging signature reveals a reprogramming strategy to enhance regenerative potential. Npj Regenerative Medicine, 2022, 7, .	2.5	4
5	INPP4B promotes PI3Kα-dependent late endosome formation and Wnt/β-catenin signaling in breast cancer. Nature Communications, 2021, 12, 3140.	5.8	30
6	A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Materials Science and Engineering C, 2021, 124, 112051.	3.8	32
7	Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 685665.	1.8	26
8	Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Translational Research, 2020, 216, 1-22.	2.2	6
9	Patient-Derived Colorectal Cancer Organoids Upregulate Revival Stem Cell Marker Genes following Chemotherapeutic Treatment. Journal of Clinical Medicine, 2020, 9, 128.	1.0	38
10	Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell, 2020, 27, 646-662.e7.	5.2	82
11	WNT signalling in the normal human adult testis and in male germ cell neoplasms. Human Reproduction, 2020, 35, 1991-2003.	0.4	10
12	PtdIns(3,4,5)P3-dependent Rac exchanger 1 (P-Rex1) promotes mammary tumor initiation and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28056-28067.	3.3	11
13	<i>Clostridioides difficile</i> infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8064-8073.	3.3	70
14	Personalized Medicine—Current and Emerging Predictive and Prognostic Biomarkers in Colorectal Cancer. Cancers, 2020, 12, 812.	1.7	30
15	A mouse model of Staphylococcus aureus small intestinal infection. Journal of Medical Microbiology, 2020, 69, 290-297.	0.7	15
16	â€~Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway'. Andrology, 2020, 8, 1456-1470.	1.9	2
17	Aging of intestinal stem cells and associated niche. Advances in Stem Cells and Their Niches, 2020, 4, 25-40.	0.1	1
18	Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut, 2019, 68, 684-692.	6.1	84

Helen E Abud

#	Article	IF	CITATIONS
19	Modelling Intestinal Carcinogenesis Using In Vitro Organoid Cultures. Methods in Molecular Biology, 2018, 1725, 41-52.	0.4	7
20	Î ² -catenin ablation exacerbates polycystic kidney disease progression. Human Molecular Genetics, 2018, 28, 230-244.	1.4	7
21	Diverse bacterial species contribute to antibiotic-associated diarrhoea and gastrointestinal damage. Journal of Infection, 2018, 77, 417-426.	1.7	19
22	Morphology and Function of the Lamb Ileum following Preterm Birth. Frontiers in Pediatrics, 2018, 6, 8.	0.9	7
23	New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells. Stem Cells, 2017, 35, 626-640.	1.4	18
24	The tammar wallaby: A marsupial model to examine the timed delivery and role of bioactives in milk. General and Comparative Endocrinology, 2017, 244, 164-177.	0.8	19
25	Exploiting induced senescence in intestinal organoids to drive enteroendocrine cell expansion. Stem Cell Investigation, 2017, 4, 36-36.	1.3	3
26	Milk: Milk of Monotremes and Marsupials. , 2016, , .		0
27	An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. Journal of Experimental Medicine, 2016, 213, 1741-1757.	4.2	55
28	A Versatile Strategy for Isolating a Highly Enriched Population of Intestinal Stem Cells. Stem Cell Reports, 2016, 6, 321-329.	2.3	27
29	Microarray profiling to analyze the effect of Snai1 loss in mouse intestinal epithelium. Genomics Data, 2015, 5, 106-108.	1.3	3
30	ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer. PLoS ONE, 2015, 10, e0138336.	1.1	16
31	Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms. Frontiers in Biology, 2015, 10, 1-10.	0.7	0
32	Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO Journal, 2015, 34, 1319-1335.	3.5	50
33	Bioactive Functions of Milk Proteins: a Comparative Genomics Approach. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 289-302.	1.0	22
34	Regulated Wnt/Beta-Catenin Signaling Sustains Adult Spermatogenesis in Mice1. Biology of Reproduction, 2014, 90, 3.	1.2	71
35	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	13.5	492
36	Regulation of cell adhesion in the testis: a new role for p73. Asian Journal of Andrology, 2014, 16, 799.	0.8	2

Helen E Abud

#	Article	IF	CITATIONS
37	Genome-Wide ENU Mutagenesis in Combination with High Density SNP Analysis and Exome Sequencing Provides Rapid Identification of Novel Mouse Models of Developmental Disease. PLoS ONE, 2013, 8, e55429.	1.1	15
38	Dmp53 is sequestered to nuclear bodies in spermatogonia of Drosophila melanogaster. Cell and Tissue Research, 2012, 350, 385-394.	1.5	9
39	Hedgehog signaling displays a biphasic expression pattern during intestinal injury and repair. Journal of Pediatric Surgery, 2012, 47, 2251-2263.	0.8	10
40	Wnt Signaling Regulates Snai1 Expression and Cellular Localization in the Mouse Intestinal Epithelial Stem Cell Niche. Stem Cells and Development, 2011, 20, 737-745.	1.1	31
41	Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/β-Catenin Pathway In Vivo. PLoS Genetics, 2010, 6, e1000816.	1.5	81
42	Differential requirement for β-catenin in epithelial and fiber cells during lens development. Developmental Biology, 2008, 321, 420-433.	0.9	70
43	Analysing Tissue and Gene Function in Intestinal Organ Culture. Methods in Molecular Biology, 2008, 468, 275-286.	0.4	4
44	Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Experimental Cell Research, 2005, 303, 252-262.	1.2	72
45	Efficient gene transfer into the epithelial cell layer of embryonic mouse intestine using low-voltage electroporationâ~†. Gastroenterology, 2004, 126, 1779-1787.	0.6	17
46	Dynamic expression of alternate splice forms of D-cbl during embryogenesis. Mechanisms of Development, 2001, 102, 235-238.	1.7	8
47	Fibroblast Growth Factors In The Developing Central Nervous System. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 493-503.	0.9	222
48	Characterization of mouse A33 antigen, a definitive marker for basolateral surfaces of intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2000, 279, G500-G510.	1.6	56
49	The murine A33 antigen is expressed at two distinct sites during development, the ICM of the blastocyst and the intestinal epithelium. Mechanisms of Development, 2000, 98, 111-114.	1.7	12
50	Double in situ hybridization on mouse embryos for detection of overlapping regions of gene expression. Trends in Genetics, 1996, 12, 385-387.	2.9	21
51	Ectopic expression of Fgf-4 in chimeric mouse embryos induces the expression of early markers of limb development in the lateral ridge. , 1996, 19, 51-65.		22
52	Spatial and temporal relationships betweenShh, Fgf4, andFgf8 gene expression at diverse signalling centers during mouse development. , 1996, 207, 291-299.		31
53	Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell, 1995, 80, 739-746.	13.5	562