Yusuf M Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996556/publications.pdf

Version: 2024-02-01

45 papers

3,576 citations

257450 24 h-index 276875 41 g-index

46 all docs

46 docs citations

times ranked

46

4311 citing authors

#	Article	IF	CITATIONS
1	Bone-Graft Substitutes: Facts, Fictions, and Applications. Journal of Bone and Joint Surgery - Series A, 2001, 83, 98-103.	3.0	556
2	Bone graft substitutes. Expert Review of Medical Devices, 2006, 3, 49-57.	2.8	524
3	Tissue Engineering of Bone: Material and Matrix Considerations. Journal of Bone and Joint Surgery - Series A, 2008, 90, 36-42.	3.0	417
4	Tissue engineered microsphere-based matrices for bone repair:. Biomaterials, 2002, 23, 551-559.	11.4	255
5	Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11099-11104.	7.1	178
6	A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. Journal of Biomedical Materials Research Part B, 2001, 58, 295-301.	3.1	148
7	Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials, 2003, 24, 1213-1221.	11.4	129
8	Novel polymer-synthesized ceramic composite-based system for bone repair: Anin vitro evaluation. Journal of Biomedical Materials Research Part B, 2004, 69A, 728-737.	3.1	127
9	Proximal Humerus Fracture Rehabilitation. Clinical Orthopaedics and Related Research, 2006, 442, 131-138.	1.5	126
10	Fracture Repair with Ultrasound: Clinical and Cell-Based Evaluation. Journal of Bone and Joint Surgery - Series A, 2008, 90, 138-144.	3.0	115
11	Regenerative Engineering. Science Translational Medicine, 2012, 4, 160ed9.	12.4	107
12	Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. Journal of Bone and Joint Surgery: British Volume, 2004, 86-B, 1200-1208.	3.4	101
13	Microsphere-Based Scaffolds in Regenerative Engineering. Annual Review of Biomedical Engineering, 2017, 19, 135-161.	12.3	98
14	In Vitro and In Vivo Characterization of Biodegradable Poly(organophosphazenes) for Biomedical Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 365-385.	3.7	70
15	Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: Physical characterization studies. Journal of Biomedical Materials Research - Part A, 2008, 84A, 54-62.	4.0	57
16	The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials, 2010, 31, 6417-6424.	11.4	53
17	Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2009, 5, 69-75.	1.1	51
18	Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling. Journal of Orthopaedic Research, 2017, 35, 1086-1095.	2.3	42

#	Article	IF	CITATIONS
19	Simple Signaling Molecules for Inductive Bone Regenerative Engineering. PLoS ONE, 2014, 9, e101627.	2.5	41
20	VEGFâ€incorporated biomimetic poly(lactideâ€ <i>co</i> â€glycolide) sintered microsphere scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2187-2196.	3.4	40
21	Biomimetic Electroconductive Nanofibrous Matrices for Skeletal Muscle Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2020, 6, 228-237.	2.9	37
22	Functionalization of chitosan/poly(lactic acidâ€glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1193-1208.	4.0	31
23	Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. Biotechnology and Bioengineering, 2007, 98, 1094-1102.	3.3	30
24	Large scale segmental bone defect healing through the combined delivery of VEGF and BMPâ€2 from biofunctionalized cortical allografts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1002-1010.	3.4	30
25	In situ synthesized ceramic–polymer composites for bone tissue engineering: bioactivity and degradation studies. Journal of Materials Science, 2007, 42, 4183-4190.	3.7	24
26	Nanofiber/Microsphere Hybrid Matrices In Vivo for Bone Regenerative Engineering: A Preliminary Report. Regenerative Engineering and Translational Medicine, 2018, 4, 133-141.	2.9	19
27	The effect of acoustic radiation force on osteoblasts in cell/hydrogel constructs for bone repair. Experimental Biology and Medicine, 2016, 241, 1149-1156.	2.4	18
28	Mechanically Loading Cell/Hydrogel Constructs with Low-Intensity Pulsed Ultrasound for Bone Repair. Tissue Engineering - Part A, 2018, 24, 254-263.	3.1	18
29	Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1141-1152.	3.5	17
30	Nanofiber-microsphere (nano-micro) matrices for bone regenerative engineering: a convergence approach toward matrix design. International Journal of Energy Production and Management, 2014, 1, 3-9.	3.7	17
31	In vitro and in vivo evaluation of a novel polymer-ceramic composite scaffold for bone tissue engineering., 2006, 2006, 529-30.		15
32	Cell responses to physical forces, and how they inform the design of tissue-engineered constructs for bone repair: a review. Journal of Materials Science, 2018, 53, 5618-5640.	3.7	15
33	Biofunctionalizing devitalized bone allografts through polymerâ€mediated short and long term growth factor delivery. Journal of Biomedical Materials Research - Part A, 2015, 103, 2847-2854.	4.0	14
34	The Treatment of Muscle Atrophy After Rotator Cuff Tears Using Electroconductive Nanofibrous Matrices. Regenerative Engineering and Translational Medicine, 2021, 7, 1-9.	2.9	12
35	Tissueâ€engineered matrices as functional delivery systems: Adsorption and release of bioactive proteins from degradable composite scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 94A, 568-575.	4.0	10
36	Nanostructured Composites for Bone Repair. Journal of Biomaterials and Tissue Engineering, 2013, 3, 426-439.	0.1	8

#	Article	IF	Citations
37	Nanoscale mapping of in situ actuating microelectromechanical systems with AFM. Journal of Materials Research, 2015, 30, 429-441.	2.6	7
38	Bone Flap Resorption in Pediatric Patients Following Autologous Cranioplasty. Operative Neurosurgery, 2021, 20, 436-443.	0.8	7
39	Tissue Engineering of Bone: A Primer for the Practicing Hand Surgeon. Journal of Hand Surgery, 2009, 34, 164-166.	1.6	5
40	A Novel Polymer-Synthesized Ceramic Composite Based System for Bone Repair: Osteoblast Growth on Scaffolds with Varied Calcium Phosphate Content. Materials Research Society Symposia Proceedings, 2004, 845, 77.	0.1	2
41	Nanofiber-permeated, hybrid polymer/ceramic scaffolds for guided cell behavior. Materials Research Society Symposia Proceedings, 2014, 1687, 24.	0.1	2
42	Polymer/Calcium Phosphate Scaffolds for Bone Tissue Engineering., 2005,, 253-263.		1
43	Bone tissue engineering. , 2022, , 1-40.		1
44	Enhancing the Functionality of Trabecular Allografts Through Polymeric Coating for Factor Loading. Regenerative Engineering and Translational Medicine, 2017, 3, 75-81.	2.9	0
45	Scaffolds, Polymer–Calcium Phosphate. , 0, , 7057-7064.		O