Selvi Durmus Erim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996469/publications.pdf

Version: 2024-02-01

23 papers 1,001 citations

566801 15 h-index 676716

22

g-index

23 all docs 23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

1754 citing authors

#	Article	IF	CITATIONS
1	Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene, 2018, 37, 2251-2269.	2.6	49
2	The impact of Organic Anion-Transporting Polypeptides (OATPs) on disposition and toxicity of antitumor drugs: Insights from knockout and humanized mice. Drug Resistance Updates, 2016, 27, 72-88.	6.5	46
3	Apical ABC Transporters and Cancer Chemotherapeutic Drug Disposition. Advances in Cancer Research, 2015, 125, 1-41.	1.9	83
4	Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharmaceutical Research, 2015, 32, 2205-2216.	1.7	53
5	Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Restrict Oral Availability and Brain Accumulation of the PARP Inhibitor Rucaparib (AG-014699). Pharmaceutical Research, 2015, 32, 37-46.	1.7	79
6	Hepatocellular Shuttling and Recirculation of Sorafenib-Glucuronide Is Dependent on Abcc2, Abcc3, and Oatp1a/1b. Cancer Research, 2015, 75, 2729-2736.	0.4	59
7	Cationic Pd(II)/Pt(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: Synthesis, structures,DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis. Journal of Inorganic Biochemistry, 2015, 152, 38-52.	1.5	41
8	Preclinical Mouse Models To Study Human OATP1B1- and OATP1B3-Mediated Drug–Drug Interactions <i>in Vivo</i> . Molecular Pharmaceutics, 2015, 12, 4259-4269.	2.3	32
9	P-glycoprotein, CYP3A, and Plasma Carboxylesterase Determine Brain Disposition and Oral Availability of the Novel Taxane Cabazitaxel (Jevtana) in Mice. Molecular Pharmaceutics, 2015, 12, 3714-3723.	2.3	20
10	Liquid chromatography–tandem mass spectrometric assay for the multikinase inhibitor regorafenib in plasma. Biomedical Chromatography, 2014, 28, 1366-1370.	0.8	22
11	<i>In vivo</i> disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. International Journal of Cancer, 2014, 135, 1700-1710.	2.3	43
12	P-Glycoprotein, CYP3A, and Plasma Carboxylesterase Determine Brain and Blood Disposition of the mTOR Inhibitor Everolimus (Afinitor) in Mice. Clinical Cancer Research, 2014, 20, 3133-3145.	3.2	29
13	Liquid chromatography–tandem mass spectrometric assay for the PARP inhibitor rucaparib in plasma. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 626-629.	1.4	14
14	P-glycoprotein (MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) restrict brain accumulation of the JAK1/2 inhibitor, CYT387. Pharmacological Research, 2013, 76, 9-16.	3.1	38
15	Liquid chromatography–tandem mass spectrometric assay for the mutated BRAF inhibitor dabrafenib in mouse plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 925, 124-128.	1.2	12
16	Liquid chromatography–tandem mass spectrometry assay for the EGFR inhibitor pelitinib in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 934, 22-25.	1.2	10
17	Oral Availability and Brain Penetration of the B-RAF ^{V600E} Inhibitor Vemurafenib Can Be Enhanced by the P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) Inhibitor Elacridar. Molecular Pharmaceutics, 2012, 9, 3236-3245.	2.3	113
18	Liquid chromatography–tandem mass spectrometric assay for the mutated BRAF inhibitor vemurafenib in human and mouse plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 889-890, 144-147.	1.2	14

#	Article	IF	CITATIONS
19	Liquid chromatography–tandem mass spectrometric assay for the VEGFR inhibitor cediranib and its primary human metabolite cediranib-N+-glucuronide in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 895-896, 169-173.	1.2	2
20	Liquid chromatography–tandem mass spectrometric assay for the JAK2 inhibitor CYT387 in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 895-896, 174-177.	1.2	9
21	Abstract 4419: The role of ABC transporters in PhIP-induced colon carcinogenesis. , 2012, , .		0
22	Analysis of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and Its Phase I and Phase II Metabolites in Mouse Urine Using LC–UV–MS–MS. Chromatographia, 2011, 74, 215-226.	0.7	4
23	MicroRNAs, macrocontrol: Regulation of miRNA processing. Rna, 2010, 16, 1087-1095.	1.6	229