Andras Dinnyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. International Journal of Molecular Sciences, 2022, 23, 855.	1.8	6
2	Transgenic pigs expressing near infrared fluorescent protein—A novel tool for noninvasive imaging of islet xenotransplants. Xenotransplantation, 2022, 29, e12719.	1.6	3
3	An in vitro strategy using multiple human induced pluripotent stem cell-derived models to assess the toxicity of chemicals: A case study on paraquat. Toxicology in Vitro, 2022, 81, 105333.	1.1	11
4	TUBE Project: Transport-Derived Ultrafines and the Brain Effects. International Journal of Environmental Research and Public Health, 2022, 19, 311.	1.2	1
5	Brain-derived neurotrophic factor increases cell number of neural progenitor cells derived from human induced pluripotent stem cells. PeerJ, 2021, 9, e11388.	0.9	12
6	Exogenous LIN28 Is Required for the Maintenance of Self-Renewal and Pluripotency in Presumptive Porcine-Induced Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 709286.	1.8	8
7	Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Archives of Toxicology, 2021, 95, 3285-3302.	1.9	13
8	Environmental Alterations during Embryonic Development: Studying the Impact of Stressors on Pluripotent Stem Cell-Derived Cardiomyocytes. Genes, 2021, 12, 1564.	1.0	3
9	Rabbit induced pluripotent stem cells: the challenges. , 2021, , 187-203.		0
10	Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Reports, 2021, 16, 2736-2751.	2.3	23
11	Maternal One-Carbon Metabolism during the Periconceptional Period and Human Foetal Brain Growth: A Systematic Review. Genes, 2021, 12, 1634.	1.0	18
12	Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes, 2021, 12, 1704.	1.0	10
13	Golgi requires a new casting in the screenplay of mucopolysaccharidosis II cytopathology. Biologia Futura, 2021, , 1.	0.6	2
14	Detection and Functional Evaluation of the P2X7 Receptor in hiPSC Derived Neurons and Microglia-Like Cells. Frontiers in Molecular Neuroscience, 2021, 14, 793769.	1.4	6
15	Live-Cell Imaging of Single Neurotrophin Receptor Molecules on Human Neurons in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 13260.	1.8	3
16	A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Research, 2020, 48, 316-331.	6.5	11
17	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	1.4	44
18	The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Archives of Toxicology, 2020, 94, 2435-2461.	1.9	30

#	Article	IF	CITATIONS
19	Integration of nano―and biotechnology for betaâ€cell and islet transplantation in typeâ€1 diabetes treatment. Cell Proliferation, 2020, 53, e12785.	2.4	18
20	CYP11A1 Upregulation Leads to Trophoblast Oxidative Stress and Fetal Neurodevelopmental Toxicity That can be Rescued by Vitamin D. Frontiers in Molecular Biosciences, 2020, 7, 608447.	1.6	4
21	Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: modulation of the lesion microenvironment. Scientific Reports, 2020, 10, 22414.	1.6	15
22	Human Induced Pluripotent Stem Cell-Derived 3D-Neurospheres Are Suitable for Neurotoxicity Screening. Cells, 2020, 9, 1122.	1.8	39
23	The Nervous System Relevance of the Calcium Sensing Receptor in Health and Disease. Molecules, 2019, 24, 2546.	1.7	29
24	Generation of human induced pluripotent stem cell line UNIGEi001-A from a 2-years old patient with Mucopolysaccharidosis type IH disease. Stem Cell Research, 2019, 41, 101604.	0.3	5
25	Calcilytic NPS 2143 Reduces Amyloid Secretion and Increases sAβPPα Release from PSEN1 Mutant iPSC-Derived Neurons. Journal of Alzheimer's Disease, 2019, 72, 885-899.	1.2	6
26	Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 195-203.	2.0	56
27	Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Experimental Cell Research, 2019, 380, 216-233.	1.2	28
28	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	1.5	18
29	Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma, 2018, 127, 387-403.	1.0	6
30	Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 353-378.	0.9	87
31	Enhancement of β-Globin Gene Expression in Thalassemic IVS2-654 Induced Pluripotent Stem Cell-Derived Erythroid Cells by Modified U7 snRNA. Stem Cells Translational Medicine, 2017, 6, 1059-1069.	1.6	12
32	Fragment-Based NMR Study of the Conformational Dynamics in the bHLH Transcription Factor Ascl1. Biophysical Journal, 2017, 112, 1366-1373.	0.2	8
33	Establishment of a rabbit induced pluripotent stem cell (RbiPSC) line using lentiviral delivery of human pluripotency factors. Stem Cell Research, 2017, 21, 16-18.	0.3	7
34	Establishment of an induced pluripotent stem cell (iPSC) line from a 9-year old male with autism spectrum disorder (ASD). Stem Cell Research, 2017, 21, 19-22.	0.3	7
35	Real architecture For 3D Tissue (RAFTâ,,¢) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells. Cytotechnology, 2017, 69, 359-369.	0.7	13
36	Systematic in vitro and in vivo characterization of Leukemiaâ€inhibiting factor―and Fibroblast growth factorâ€derived porcine induced pluripotent stem cells. Molecular Reproduction and Development, 2017, 84, 229-245.	1.0	13

#	Article	IF	CITATIONS
37	Antimicrobial resistance of Lactobacillus spp. from fermented foods and human gut. LWT - Food Science and Technology, 2017, 86, 201-208.	2.5	21
38	Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Research, 2017, 25, 139-151.	0.3	95
39	Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of <i>Runx3</i> . Journal of Immunology, 2017, 198, 239-248.	0.4	9
40	In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Archives of Toxicology, 2017, 91, 1-33.	1.9	132
41	The Potency of Induced Pluripotent Stem Cells in Cartilage Regeneration and Osteoarthritis Treatment. Advances in Experimental Medicine and Biology, 2017, 1079, 55-68.	0.8	21
42	Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer's Research and Therapy, 2017, 9, 90.	3.0	161
43	Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy. Stem Cells International, 2016, 2016, 1-16.	1.2	10
44	Neurosphere Based Differentiation of Human iPSC Improves Astrocyte Differentiation. Stem Cells International, 2016, 2016, 1-15.	1.2	53
45	Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Frontiers in Cellular Neuroscience, 2016, 10, 215.	1.8	120
46	Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Research, 2016, 17, 78-80.	0.3	7
47	Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Research, 2016, 17, 81-83.	0.3	9
48	Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Research, 2016, 17, 72-74.	0.3	12
49	Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies. Methods in Molecular Biology, 2016, 1502, 169-179.	0.4	3
50	Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 3-year-old male with pathogenic IDS mutation. Stem Cell Research, 2016, 17, 479-481.	0.3	6
51	Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation. Stem Cell Research, 2016, 17, 482-484.	0.3	11
52	Derivation of induced pluripotent stem cells from a familial Alzheimer's disease patient carrying the L282F mutation in presenilin 1. Stem Cell Research, 2016, 17, 470-473.	0.3	7
53	Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Research, 2016, 17, 531-533.	0.3	7
54	Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 7-year-old male with pathogenic IDS mutation. Stem Cell Research, 2016, 17, 463-465.	0.3	6

#	Article	IF	CITATIONS
55	Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder. Stem Cell Research, 2016, 17, 514-516.	0.3	11
56	Targeted next generation sequencing of a panel of autism-related genes identifies an EHMT1 mutation in a Kleefstra syndrome patient with autism and normal intellectual performance. Gene, 2016, 595, 131-141.	1.0	25
57	Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Research, 2016, 17, 75-77.	0.3	8
58	In vitro models of cancer stem cells and clinical applications. BMC Cancer, 2016, 16, 738.	1.1	65
59	The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation, 2016, 92, 183-194.	1.0	10
60	Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying an A79V mutation in PSEN1. Stem Cell Research, 2016, 16, 229-232.	0.3	27
61	Establishment of PSEN1 mutant induced pluripotent stem cell (iPSC) line from an Alzheimer's disease (AD) female patient. Stem Cell Research, 2016, 17, 69-71.	0.3	12
62	Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying a M146I mutation in PSEN1. Stem Cell Research, 2016, 16, 334-337.	0.3	11
63	Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016, 99, 62-68.	1.9	189
64	The crossroads between cancer stem cells and aging. BMC Cancer, 2015, 15, S1.	1.1	17
65	Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes. Gene, 2015, 566, 148-157.	1.0	12
66	Lack of Rybp in Mouse Embryonic Stem Cells Impairs Cardiac Differentiation. Stem Cells and Development, 2015, 24, 2193-2205.	1.1	18
67	Human three-dimensional engineered neural tissue reveals cellular and molecular events following cytomegalovirus infection. Biomaterials, 2015, 53, 296-308.	5.7	18
68	Grafted murine induced pluripotent stem cells prevent death of injured rat motoneurons otherwise destined to die. Experimental Neurology, 2015, 269, 188-201.	2.0	17
69	Vitrified sheep isolated secondary follicles are able to grow and form antrum after a short period of in vitro culture. Cell and Tissue Research, 2015, 362, 241-251.	1.5	22
70	Towards Understanding Protein Disorder In-Cell. Advances in Experimental Medicine and Biology, 2015, 870, 319-334.	0.8	3
71	Boolean Modelling Reveals New Regulatory Connections between Transcription Factors Orchestrating the Development of the Ventral Spinal Cord. PLoS ONE, 2014, 9, e111430.	1.1	23

5

#	Article	IF	CITATIONS
73	Generation of Mouse Induced Pluripotent Stem Cells by Protein Transduction. Tissue Engineering - Part C: Methods, 2014, 20, 383-392.	1.1	35
74	Screening of Bioactive Peptides Using an Embryonic Stem Cell-Based Neurodifferentiation Assay. AAPS Journal, 2014, 16, 400-412.	2.2	10
75	Generation of transgene-free mouse induced pluripotent stem cells using an excisable lentiviral system. Experimental Cell Research, 2014, 322, 335-344.	1.2	10
76	Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research, 2014, 327, 297-306.	1.2	13
77	Selective TGF-β1/ALK inhibitor improves neuronal differentiation of mouse embryonic stem cells. Neuroscience Letters, 2014, 578, 1-6.	1.0	6
78	ls aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology, 2013, 14, 591-602.	2.0	16
79	Veterinary applications of induced pluripotent stem cells: Regenerative medicine and models for disease?. Veterinary Journal, 2013, 198, 34-42.	0.6	15
80	Tissue resident stem cells: till death do us part. Biogerontology, 2013, 14, 573-590.	2.0	37
81	Slow Turning Lateral Vessel Bioreactor Improves Embryoid Body Formation and Cardiogenic Differentiation of Mouse Embryonic Stem Cells. Cellular Reprogramming, 2013, 15, 443-458.	0.5	12
82	Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation, 2013, 86, 30-37.	1.0	43
83	Age influence on hypersensitivity pneumonitis induced in mice by exposure to <i>Pantoea agglomerans</i> . Inhalation Toxicology, 2013, 25, 640-650.	0.8	10
84	Drug Discovery Models and Toxicity Testing Using Embryonic and Induced Pluripotent Stem-Cell-Derived Cardiac and Neuronal Cells. Stem Cells International, 2012, 2012, 1-9.	1.2	40
85	Temporal Repression of Endogenous Pluripotency Genes during Reprogramming of Porcine Induced Pluripotent Stem Cells. Cellular Reprogramming, 2012, 14, 204-216.	0.5	38
86	Comparative Analysis of Nuclear Transfer Embryo-Derived Mouse Embryonic Stem Cells. Part I: Cellular Characterization. Cellular Reprogramming, 2012, 14, 56-67.	0.5	6
87	Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Experimental Cell Research, 2012, 318, 2482-2489.	1.2	26
88	Generation of Neuronal Progenitor Cells and Neurons from Mouse Sleeping Beauty Transposon–Generated Induced Pluripotent Stem Cells. Cellular Reprogramming, 2012, 14, 390-397.	0.5	16
89	In vitro fertilization of ovine oocytes vitrified by solid surface vitrification at germinal vesicle stage. Cryobiology, 2012, 65, 139-144.	0.3	46
90	TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo. PLoS ONE, 2012, 7, e39141.	1.1	54

#	Article	IF	CITATIONS
91	Comparative Analysis of Nuclear Transfer Embryo-Derived Mouse Embryonic Stem Cells. Part II: Gene Regulation. Cellular Reprogramming, 2012, 14, 68-78.	0.5	1
92	Seven ages of the PhD. Nature, 2011, 472, 283-286.	13.7	1
93	Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactor. Biotechnology Letters, 2011, 33, 1565-1573.	1.1	21
94	Effect of human Î ² -globin bacterial artificial chromosome transgenesis on embryo cryopreservation in mouse models. Reproduction, Fertility and Development, 2010, 22, 788.	0.1	1
95	Gene targeting and Calcium handling efficiencies in mouse embryonic stem cell lines. World Journal of Stem Cells, 2010, 2, 127.	1.3	6
96	Tbx3: another important piece fitted into the pluripotent stem cell puzzle. Stem Cell Research and Therapy, 2010, 1, 12.	2.4	5
97	Generation of Mouse Embryonic Stem Cell Lines from Zona-Free Nuclear Transfer Embryos. Cellular Reprogramming, 2010, 12, 105-113.	0.5	8
98	Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos. BMC Molecular Biology, 2009, 10, 88.	3.0	42
99	Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Cryobiology, 2009, 59, 127-134.	0.3	19
100	Live Birth of Somatic Cell-Cloned Rabbits following Trichostatin A Treatment and Cotransfer of Parthenogenetic Embryos. Cloning and Stem Cells, 2009, 11, 203-208.	2.6	91
101	Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World Journal of Stem Cells, 2009, 1, 11.	1.3	70
102	Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background. World Journal of Stem Cells, 2009, 1, 22.	1.3	16
103	Rabbit Cloning. , 2009, , 105-128.		Ο
104	Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Molecular Biology, 2008, 9, 67.	3.0	53
105	In vitro development of polyspermic porcine oocytes: Relationship between early fragmentation and excessive number of penetrating spermatozoa. Animal Reproduction Science, 2008, 107, 131-147.	0.5	33
106	Animal cloning for food: epigenetics, health, welfare and food safety aspects. Trends in Food Science and Technology, 2008, 19, S88-S95.	7.8	8
107	Cotransfer of Parthenogenetic Embryos Improves the Pregnancy and Implantation of Nuclear Transfer Embryos in Mouse. Cloning and Stem Cells, 2008, 10, 429-434.	2.6	19
108	Effects of vitrification procedures on subsequent development and ultrastructure of in vitro-matured swamp buffalo (Bubalus bubalis) oocytes. Reproduction, Fertility and Development, 2007, 19, 383.	0.1	31

#	Article	IF	CITATIONS
109	Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: Effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology, 2007, 55, 115-126.	0.3	143
110	Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Developmental Biology, 2007, 7, 14.	2.1	180
111	Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Developmental Biology, 2007, 7, 141.	2.1	46
112	Comparison of real-time polymerase chain reaction and end-point polymerase chain reaction for the analysis of gene expression in preimplantation embryos. Reproduction, Fertility and Development, 2006, 18, 365.	0.1	25
113	Development to the blastocyst stage of parthenogenetically activated in vitro matured porcine oocytes after solid surface vitrification (SSV). Theriogenology, 2006, 66, 415-422.	0.9	50
114	Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos. Molecular Reproduction and Development, 2006, 73, 700-708.	1.0	61
115	Gene expression profiles of vitrified in vivo derived 8-cell stage mouse embryos detected by high density oligonucleotide microarrays. Molecular Reproduction and Development, 2006, 73, 1380-1392.	1.0	45
116	Summary: The Budapest meeting 2005 intensified networking on ethics of science. Science and Engineering Ethics, 2006, 12, 415-420.	1.7	1
117	The Budapest meeting 2005 intensified networking on ethics of science. Science and Engineering Ethics, 2006, 12, 731-793.	1.7	5
118	Comparative studies with six extenders for sperm cryopreservation in the cynomolgus monkey (Macaca fascicularis) and rhesus monkey (Macaca mulatta). American Journal of Primatology, 2006, 68, 39-49.	0.8	38
119	Diploid porcine parthenotes produced by inhibition of first polar body extrusion during in vitro maturation of follicular oocytes. Reproduction, 2006, 132, 559-570.	1.1	23
120	Animal cloning by nuclear transfer: state-of-the-art and future perspectives. Acta Biochimica Polonica, 2005, 52, 585-8.	0.3	1
121	Effect of glycerol and dimethyl sulfoxide on cryopreservation of rhesus monkey (Macaca mulatta) sperm. American Journal of Primatology, 2004, 62, 301-306.	0.8	34
122	Bovine Blastocyst Development In Vitro: Timing, Sex, and Viability Following Vitrification1. Biology of Reproduction, 2004, 71, 1671-1676.	1.2	48
123	Effect of amino acids on cryopreservation of cynomolgus monkey (macaca fascicularis) sperm. American Journal of Primatology, 2003, 59, 159-165.	0.8	47
124	Cryopreservation of goat oocytes and in vivo derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods. Theriogenology, 2003, 59, 1839-1850.	0.9	97
125	Somatic Cell Nuclear Transfer: Recent Progress and Challenges. Cloning and Stem Cells, 2002, 4, 81-90.	2.6	63
126	Somatic Cell Nuclear Transfer in the Pig: Control of Pronuclear Formation and Integration with Improved Methods for Activation and Maintenance of Pregnancy1. Biology of Reproduction, 2002, 66, 642-650.	1.2	165

#	Article	IF	CITATIONS
127	Vitrification of Yunnan Yellow Cattle oocytes: work in progress. Theriogenology, 2002, 58, 1253-1260.	0.9	13
128	Aberrant patterns of X chromosome inactivation in bovine clones. Nature Genetics, 2002, 31, 216-220.	9.4	293
129	Cloning of Rabbits. , 2002, , 343-366.		0
130	Bovine oocyte and embryo development following meiotic inhibition with butyrolactone I. Molecular Reproduction and Development, 2000, 57, 204-209.	1.0	86
131	Parthenogenetic Activation of Porcine Oocytes by Electric Pulse and/or Butyrolactone I Treatment. Cloning, 1999, 1, 209-216.	2.1	14
132	Timing of the first cleavage post-insemination affects cryosurvival of in vitro-produced bovine blastocysts. Molecular Reproduction and Development, 1999, 53, 318-324.	1.0	109
133	Timing of the first cleavage post-insemination affects cryosurvival of in vitro–produced bovine blastocysts. , 1999, 53, 318.		8
134	In vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation. Molecular Reproduction and Development, 1998, 51, 281-286.	1.0	73
135	Morphology and biochemistry of in-vitro produced bovine embryos: implications for their cryopreservation. Human Reproduction, 1995, 10, 3004-3011.	0.4	145