Rafael Picorel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8995995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Lipids and Fatty Acids in the Maintenance of Photosynthesis and the Assembly of Photosynthetic Complexes During Photosystem II Turnover. Advances in Photosynthesis and Respiration, 2021, , 395-427.	1.0	0
2	Effects of Chlorophyll Triplet States on the Kinetics of Spectral Hole Growth. Journal of Physical Chemistry B, 2021, 125, 3278-3285.	2.6	0
3	Different Cis-Regulatory Elements Control the Tissue-Specific Contribution of Plastid ω-3 Desaturases to Wounding and Hormone Responses. Frontiers in Plant Science, 2021, 12, 727292.	3.6	6
4	Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae. Plant Molecular Biology, 2020, 104, 283-296.	3.9	6
5	New Perspectives on Photosystem II Reaction Centres. Australian Journal of Chemistry, 2020, 73, 669.	0.9	6
6	Tissue Distribution and Specific Contribution of Arabidopsis FAD7 and FAD8 Plastid Desaturases to the JA- and ABA-Mediated Cold Stress or Defense Responses. Plant and Cell Physiology, 2019, 60, 1025-1040.	3.1	22
7	Evidence of Simultaneous Spectral Hole Burning Involving Two Tiers of the Protein Energy Landscape in Cytochrome <i>b</i> ₆ <i>f</i> . Journal of Physical Chemistry B, 2019, 123, 10930-10938.	2.6	3
8	A simple and efficient method to prepare pure dimers and monomers of the cytochrome b 6 f complex from spinach. Photosynthesis Research, 2017, 132, 305-309.	2.9	2
9	Probing Energy Landscapes of Cytochrome <i>b</i> ₆ <i>f</i> with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent. Journal of Physical Chemistry B, 2017, 121, 9848-9858.	2.6	5
10	Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.). Journal of Plant Physiology, 2017, 208, 7-16.	3.5	26
11	Editorial: Molecular Basis of the Response of Photosynthetic Apparatus to Light and Temperature Stress. Frontiers in Plant Science, 2017, 8, 288.	3.6	6
12	The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1580-1593.	1.0	30
13	Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 115-128.	1.0	36
14	Does the Singlet Minus Triplet Spectrum with Major Photobleaching Band Near 680–682 nm Represent an Intact Reaction Center of Photosystem II?. Journal of Physical Chemistry B, 2015, 119, 448-455.	2.6	5
15	Non-redundant Contribution of the Plastidial FAD8 ï‰-3 Desaturase to Glycerolipid Unsaturation at Different Temperatures in Arabidopsis. Molecular Plant, 2015, 8, 1599-1611.	8.3	48
16	In vivo reconstitution of a homodimeric cytochrome b559 like structure: The role of the N-terminus α -subunit from Synechocystis sp. PCC 6803. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 308-317.	3.8	0
17	Conformational Changes in Pigment–Protein Complexes at Low Temperatures—Spectral Memory and a Possibility of Cooperative Effects. Journal of Physical Chemistry B, 2015, 119, 6930-6940.	2.6	10
18	Regulation of the chloroplastic copper chaperone (CCS) and cuprozinc superoxide dismutase (CSD2) by alternative splicing and copper excess in Glycine max. Functional Plant Biology, 2014, 41, 144.	2.1	12

#	Article	IF	CITATIONS
19	A temporal regulatory mechanism controls the different contribution of endoplasmic reticulum and plastidial I‰-3 desaturases to trienoic fatty acid content during leaf development in soybean (Glycine) Tj ETQq1	1 0. ø8431	4∮gBT /Ove
20	Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. Journal of Experimental Botany, 2012, 63, 4973-4982.	4.8	81
21	Reconstitution, spectroscopy, and redox properties of the photosynthetic recombinant cytochrome b 559 from higher plants. Photosynthesis Research, 2012, 112, 193-204.	2.9	4
22	Spectral Hole Burning, Recovery, and Thermocycling in Chlorophyll–Protein Complexes: Distributions of Barriers on the Protein Energy Landscape. Journal of Physical Chemistry B, 2012, 116, 11780-11790.	2.6	20
23	Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas reinhardtii. Journal of Physical Chemistry B, 2012, 116, 3890-3899.	2.6	24
24	Characterization of the recombinant copper chaperone (CCS) from the plant Glycine (G.) max Metallomics, 2011, 3, 169.	2.4	5
25	Effects of the Distributions of Energy or Charge Transfer Rates on Spectral Hole Burning in Pigment–Protein Complexes at Low Temperatures. Journal of Physical Chemistry B, 2011, 115, 15098-15109.	2.6	17
26	Parameters of the Protein Energy Landscapes of Several Light-Harvesting Complexes Probed via Spectral Hole Growth Kinetics Measurements. Journal of Physical Chemistry B, 2011, 115, 2737-2747.	2.6	16
27	Spectroscopic Study of the CP43′ Complex and the PSI–CP43′ Supercomplex of the Cyanobacterium <i>Synechocystis</i> PCC 6803. Journal of Physical Chemistry B, 2011, 115, 13339-13349.	2.6	33
28	Isolation of Photosystem II Reaction Center Complexes from Plants. Methods in Molecular Biology, 2011, 684, 17-27.	0.9	3
29	Isolation and Purification of CP43 and CP47 Photosystem II Proximal Antenna Complexes from Plants. Methods in Molecular Biology, 2011, 684, 105-112.	0.9	5
30	The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. Journal of Experimental Botany, 2010, 61, 3371-3384.	4.8	31
31	Insight into the Electronic Structure of the CP47 Antenna Protein Complex of Photosystem II: Hole Burning and Fluorescence Study. Journal of the American Chemical Society, 2010, 132, 4214-4229.	13.7	39
32	¹ H Hyperfine Interactions in the Mn-Cluster of Photosystem II in the S ₂ State Detected by Hyperfine Sublevel Correlation Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 15345-15353.	2.6	7
33	The CP43 Proximal Antenna Complex of Higher Plant Photosystem II Revisited: Modeling and Hole Burning Study. I. Journal of Physical Chemistry B, 2008, 112, 9921-9933.	2.6	39
34	In Situ Molecular Identification of the Plastid <i>ω</i> 3 Fatty Acid Desaturase FAD7 from Soybean: Evidence of Thylakoid Membrane Localization. Plant Physiology, 2007, 145, 1336-1344.	4.8	32
35	Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. Journal of Structural Biology, 2007, 158, 46-58.	2.8	40
36	Changes in photosynthetic electron transfer and state transitions in an herbicide-resistant D1 mutant from soybean cell cultures. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 694-702.	1.0	7

#	Article	IF	CITATIONS
37	Selective Photobleaching of Chlorophylls and Carotenoids in Photosystem I Particles under High-Light Treatment. Photochemistry and Photobiology, 2007, 83, 1301-1307.	2.5	26
38	Foliar and root Cu supply affect differently Fe- and Zn-uptake and photosynthetic activity in soybean plants. Environmental and Experimental Botany, 2007, 60, 145-150.	4.2	52
39	Resonance Raman and Surface-Enhanced Resonance Raman Spectra of LH2 Antenna Complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. Excited in the Qx and Qy Transitions â€. Photochemistry and Photobiology, 2007, 71, 589-595.	2.5	0
40	A light-sensitive mechanism differently regulates transcription and transcript stability of ï‰3 fatty-acid desaturases (FAD3 , FAD7 and FAD8) in soybean photosynthetic cell suspensions. FEBS Letters, 2006, 580, 4934-4940.	2.8	51
41	Photophysical Behavior and Assignment of the Low-Energy Chlorophyll States in the CP43 Proximal Antenna Protein of Higher Plant Photosystem IIâ€. Biochemistry, 2006, 45, 12345-12357.	2.5	42
42	Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions. Physiologia Plantarum, 2006, 127, 312-325.	5.2	43
43	Copper effect on cytochrome b559 of photosystem II under photoinhibitory conditions. Physiologia Plantarum, 2004, 120, 686-694.	5.2	23
44	Photoinhibition and recovery in a herbicide-resistant mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid unsaturation. Planta, 2004, 219, 428-39.	3.2	12
45	Photobleaching of photosynthetic pigments in spinach thylakoid membranes. Effect of temperature, oxygen and DCMU. Biophysical Chemistry, 2004, 107, 25-32.	2.8	13
46	Low-temperature spectroscopy of fully active PSII cores. Comparisons with CP43, CP47, D1/D2/cyt b559 fragments. Journal of Luminescence, 2004, 108, 97-100.	3.1	23
47	Photo-conversion of chlorophylls in higher-plant CP43 characterized by persistent spectral hole burning at 1.7K. Journal of Luminescence, 2004, 108, 131-136.	3.1	26
48	Isolation of Photosystem II Reaction Center Complexes From Plants. , 2004, 274, 053-062.		1
49	Isolation of CP43 and CP47 Photosystem II Proximal Antenna Complexes From Plants. , 2004, 274, 129-136.		2
50	Different kinetics of photoinactivation of photosystem I-mediated electron transport and P700 in isolated thylakoid membranes. Journal of Photochemistry and Photobiology B: Biology, 2003, 69, 41-48.	3.8	5
51	Cytochrome b559 content in isolated photosystem II reaction center preparations. FEBS Journal, 2003, 270, 2268-2273.	0.2	2
52	HYSCORE Spectroscopy in the Cytochromeb559of the Photosystem II Reaction Center. Journal of the American Chemical Society, 2003, 125, 15846-15854.	13.7	55
53	How Fast Is Excitation Energy Transfer in the Photosystem II Reaction Center in the Low Temperature Limit? Hole Burning vs Photon Echo. Journal of Physical Chemistry B, 2003, 107, 2862-2866.	2.6	13
54	Primary Charge-Separation Rate at 5 K in Isolated Photosystem II Reaction Centers Containing Five and Six Chlorophyll a Molecules. Journal of Physical Chemistry B, 2003, 107, 2068-2074.	2.6	14

#	Article	IF	CITATIONS
55	Detergent effect on Cytochrome b559electron paramagnetic resonance signals in the photosystem II reaction centre. Photochemical and Photobiological Sciences, 2003, 2, 437-442.	2.9	8
56	Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1554, 29-35.	1.0	14
57	Spin label electron paramagnetic resonance study in thylakoid membranes from a new herbicide-resistant D1 mutant from soybean cell cultures deficient in fatty acid desaturation. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 55-63.	2.6	9
58	Alkaline Denaturation of the Light-Harvesting Complex II from the Purple BacteriumEctothiorhodospira Sp.:Â Kinetic Evidence of the Existence of the 780 nm Upper Exciton Component of the B850 Bacteriochlorophyllsâ€. Biochemistry, 2001, 40, 2894-2900.	2.5	1
59	Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid desaturation. Planta, 2001, 212, 573-582.	3.2	94
60	Light-induced absorption spectra of the D1-D2-cytochrome b 559 complex of Photosystem II: Effect of methyl viologen concentration. Photosynthesis Research, 2001, 67, 199-206.	2.9	10
61	A Study on the Heterogeneity of the Light-Harvesting Complex II from Ectothiorhodospira sp. after Acid/Chaotropic Treatment. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 943-947.	1.4	0
62	Effects of acid pH and urea on the spectral properties of the LHII antenna complex from the photosynthetic bacterium Ectothiorhodospira sp FEBS Journal, 2000, 267, 3235-3243.	0.2	9
63	Copper effect on the protein composition of photosystem II. Physiologia Plantarum, 2000, 110, 551-557.	5.2	55
64	Periplasmic electron carriers and photo-induced electron transfer in the photosynthetic bacterium Ectothiorhodospira sp. Photosynthesis Research, 2000, 65, 53-62.	2.9	0
65	Absorption Properties of the Carotenoids after Alkaline Denaturation of the Light-Harvesting Complex II from Ectothiorhodospira sp Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 576-581.	1.4	0
66	Resonance Raman and Surface-Enhanced Resonance Raman Spectra of LH2 Antenna Complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. Excited in the Qx and Qy Transitionsâ€. Photochemistry and Photobiology, 2000, 71, 589.	2.5	10
67	The CP43 Core Antenna Complex of Photosystem II Possesses Two Quasi-Degenerate and Weakly Coupled Qy-Trap States. Journal of Physical Chemistry B, 2000, 104, 11805-11815.	2.6	58
68	Copper effect on the protein composition of photosystem II. Physiologia Plantarum, 2000, 110, 551-557.	5.2	1
69	Effect of the pH on the absorption spectrum of the isolated D1-D2-cytochrome b559 complex of photosystem II. Journal of Photochemistry and Photobiology B: Biology, 1999, 50, 129-136.	3.8	6
70	Excited States of the 5-Chlorophyll Photosystem II Reaction Center. Journal of Physical Chemistry B, 1999, 103, 9759-9769.	2.6	48
71	Spectral Changes Induced by Alkaline pH and Specific Chemical Modification of Amino Acid Residues in the Lightâ€Harvesting II Antenna Complex from <i>Ectothiorhodospira</i> sp Photochemistry and Photobiology, 1999, 69, 275-281.	2.5	0
72	Spectral Changes Induced by Alkaline pH and Specific Chemical Modification of Amino Acid Residues in the Light-Harvesting II Antenna Complex from Ectothiorhodospira sp Photochemistry and Photobiology, 1999, 69, 275.	2.5	4

#	Article	IF	CITATIONS
73	The Configuration of βâ€Carotene in the Photosystem II Reaction Center. Photochemistry and Photobiology, 1998, 68, 729-737.	2.5	16
74	Effect of bicarbonate on the S2 multiline EPR signal of the oxygen-evolving complex in photosystem II membrane fragments. FEBS Letters, 1998, 424, 146-148.	2.8	17
75	Surface-Enhanced Resonance Raman Scattering Spectroscopy of Plant Photosystem II Reaction Centers Excited on the Red-Edge of the QyBandâ€. Journal of Physical Chemistry B, 1998, 102, 2609-2613.	2.6	18
76	The Configuration of \hat{l}^2 -Carotene in the Photosystem II Reaction Center. Photochemistry and Photobiology, 1998, 68, 729.	2.5	3
77	Characterization of the Light-Harvesting Antennas of Photosynthetic Purple Bacteria by Stark Spectroscopy. 2. LH2 Complexes:  Influence of the Protein Environment. Journal of Physical Chemistry B, 1997, 101, 7293-7301.	2.6	90
78	Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5050-5054.	7.1	78
79	Langmuir-Blodgett and X-ray Diffraction Studies of Isolated Photosystem II Reaction Centers in Monolayers and Multilayers: Physical Dimensions of the Complex. Photochemistry and Photobiology, 1997, 65, 673-679.	2.5	15
80	Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 44-50.	1.0	25
81	Cu(II)-Inhibitory Effect on Photosystem II from Higher Plants. A Picosecond Time-Resolved Fluorescence Studyâ€. Biochemistry, 1996, 35, 9469-9474.	2.5	48
82	High pressure studies of energy transfer and strongly coupled bacteriochlorophyll dimers in photosynthetic protein complexes. Photosynthesis Research, 1996, 48, 277-289.	2.9	39
83	Photoinhibition of Photosystem II from Higher Plants. Journal of Biological Chemistry, 1996, 271, 27408-27415.	3.4	121
84	Induced New Mutation of D1 Serine-268 in Soybean Photosynthetic Cell Cultures Produced Atrazine Resistance, Increased Stability of S2QB - and S3QB - States, and Increased Sensitivity to Light Stress. Plant Physiology, 1996, 112, 1499-1508.	4.8	38
85	Pigment Content of D1-D2-Cytochrome b559 Reaction Center Preparations after Removal of CP47 Contamination: An Immunological Study. Biochemistry, 1995, 34, 15214-15218.	2.5	11
86	Photoreduction of Cytochrome b-559 and Photoinhibition of Photosystem II from Higher Plants: Effect of Cu (II) Inhibition. , 1995, , 3191-3194.		0
87	Exciton Level Structure and Dynamics in the CP47 Antenna Complex of Photosystem II. The Journal of Physical Chemistry, 1994, 98, 7717-7724.	2.9	64
88	On the Question of the Chlorophyll a Content of the Photosystem II Reaction Center. The Journal of Physical Chemistry, 1994, 98, 7725-7735.	2.9	68
89	Spectral changes of the B800–850 antenna complex from Ectothiorhodospira sp. induced by detergent and salt treatment. Photosynthesis Research, 1994, 41, 339-347.	2.9	16
90	Core Antenna Complexes, CP43 and CP47, of Higher Plant Photosystem II. Spectral Properties, Pigment Stoichiometry, and Amino Acid Composition. Biochemistry, 1994, 33, 10494-10500.	2.5	116

#	Article	lF	CITATIONS
91	Surface-Enhanced Resonance Raman Scattering Spectroscopy of Photosystem II Pigment-Protein Complexes. The Journal of Physical Chemistry, 1994, 98, 6017-6022.	2.9	30
92	Pigment stoichiometry of the Photosystem II reaction center from higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 187-190.	1.0	9
93	A comparison of the photochemical activity of two forms of Photosystem II reaction centre isolated from sugar beet. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 85-91.	1.0	1
94	The state of iron in the oxygen-evolving core complex of the cyanobacterium Phormidium laminosum: Mössbauer spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 171-177.	1.0	4
95	Detergent-Induced Reversible Denaturation of the Photosystem II Reaction Center: Implications for Pigment-Protein Interactions. Biochemistry, 1994, 33, 11798-11804.	2.5	19
96	SPECTROSCOPIC CHARACTERIZATION OF TWO FORMS OF THE D1-D2-CYTOCHROME b559 COMPLEX FROM SUGAR BEET. Photochemistry and Photobiology, 1993, 58, 724-729.	2.5	17
97	STRUCTURAL AND FUNCTIONAL INTEGRITY OF THE PHOTOSYSTEM II REACTION CENTER ON SILVER ELECTRODES: FLUORESCENCE AND REDOX PROBES. Photochemistry and Photobiology, 1993, 58, 757-760.	2.5	10
98	Phototrapping of doubly reduced monomeric bacteriochlorophyll in the photoreaction center of Ectothiorhodospira sp. Biochemistry, 1993, 32, 1466-1470.	2.5	8
99	Characterization of photosynthetic reaction centers by surface-enhanced resonance Raman scattering. , 1993, 1921, 295.		0
100	B896 and B870 components of the Rhodobacter sphaeroides antenna: a hole burning study. The Journal of Physical Chemistry, 1992, 96, 6458-6464.	2.9	160
101	[4] Surface-enhanced raman scattering spectroscopy of photosynthetic membranes and complexes. Methods in Enzymology, 1992, 213, 31-42.	1.0	17
102	The inhibitory mechanism of Cu(II) on the Photosystem II electron transport from higher plants. Photosynthesis Research, 1992, 33, 227-233.	2.9	42
103	SURFACE-ENHANCED RESONANCE RAMAN SCATTERING SPECTROSCOPY AS A SURFACE TOPOGRAPHY PROBE IN PLANT PHOTOSYNTHETIC MEMBRANES. Photochemistry and Photobiology, 1992, 56, 263-270.	2.5	14
104	Stability of isolated bacterial and photosystem II reaction center complexes on silver electrode surfaces. A surface-enhanced resonance Raman study. Journal of the American Chemical Society, 1991, 113, 2839-2843.	13.7	30
105	Pigment stoichiometry of a newly isolated D1-D2-Cyt b 559 complex from the higher plant Beta vulgaris L. FEBS Letters, 1991, 283, 255-258.	2.8	56
106	Energy transfer dynamics of the B800—B850 antenna complex of Rhodobacter sphaeroides: a hole burning study. Chemical Physics Letters, 1991, 181, 391-399.	2.6	122
107	Supramolecular arrangement of Rhodospirillum rubrum B880 holochrome as studied by radiation inactivation and electron paramagnetic resonance Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3405-3409.	7.1	24
108	Surface-enhanced resonance Raman scattering spectroscopy of bacterial photosynthetic membranes: orientation of the carotenoids of Rhodobacter sphaeroides 2.4.1. Biochemistry, 1990, 29, 707-712.	2.5	28

#	Article	IF	CITATIONS
109	Stabilization of Isolated Photosystem II Reaction Center Complex in the Dark and in the Light Using Polyethylene Glycol and an Oxygen-Scrubbing System. Plant Physiology, 1989, 89, 452-456.	4.8	89
110	Further characterization of the photoreaction center fromEctothiorhodospirasp. detection of the H subunit by monoclonal antibodies. FEMS Microbiology Letters, 1989, 65, 247-252.	1.8	3
111	Preparative isolation and characterization of the B875 complex from Rhodobacter sphaeroides 2.4.1. Biochemistry and Cell Biology, 1988, 66, 442-448.	2.0	17
112	Spectral, Photophysical, and Stability Properties of Isolated Photosystem II Reaction Center. Plant Physiology, 1988, 87, 303-306.	4.8	148
113	Oxido-reduction of B800-850 and B880 holochromes isolated from three species of photosynthetic bacteria as studied by electron-paramagnetic resonance and optical spectroscopy. FEBS Journal, 1984, 142, 305-311.	0.2	44
114	Photoreaction center of Ectothiorhodospira sp. Pigment, heme, quinone, and polypeptide composition. Biochemistry, 1984, 23, 5279-5288.	2.5	31
115	Antenna holochrome B880 of Rhodospirillum rubrum S1. Pigment, phospholipid, and polypeptide composition. Biochemistry, 1983, 22, 2491-2497.	2.5	101
116	Photosynthetic unit size and electron-transport chain in a photoreaction center-depleted mutant of Rhodospirillum rubrum. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 682, 354-363.	1.0	3
117	Rotational mobility of the photoreaction center in chromatophore membranes of Rhodospirillum rubrum. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 637, 546-550.	1.0	11
118	The photoreaction center of Rhodospirillum rubrum mutant strain F24.1. Biochimica Et Biophysica Acta - Bioenergetics, 1980, 593, 76-84.	1.0	10
119	Isolation of a photosynthetic strain of Rhodospirillum rubrum with an altered reaction center. Archives of Biochemistry and Biophysics, 1977, 181, 665-670.	3.0	7