JuliÃ;n M Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/89956/publications.pdf Version: 2024-02-01

Ιπιά:Ν Μ Ορτιζ

#	Article	IF	CITATIONS
1	Stochastic Final Pit Limits: An Efficient Frontier Analysis under Geological Uncertainty in the Open-Pit Mining Industry. Mathematics, 2022, 10, 100.	2.2	5
2	A combined multivariate approach analyzing geochemical data for knowledge discovery: The Vazante – Paracatu Zinc District, Minas Gerais, Brazil. Journal of Geochemical Exploration, 2021, 221, 106696.	3.2	9
3	Uncertainty Assessment over any Volume without Simulation: Revisiting Multi-Gaussian Kriging. Mathematical Geosciences, 2021, 53, 1375-1405.	2.4	2
4	A Simple Unsupervised Classification Workflow for Defining Geological Domains Using Multivariate Data. Mining, Metallurgy and Exploration, 2021, 38, 1609-1623.	0.8	2
5	On the Use of Machine Learning for Mineral Resource Classification. Mining, Metallurgy and Exploration, 2021, 38, 2055-2073.	0.8	2
6	Multiple Point Statistics. Encyclopedia of Earth Sciences Series, 2021, , 1-11.	0.1	0
7	Geological Facies Recovery Based on Weighted \$\$ell _1\$\$-Regularization. Mathematical Geosciences, 2020, 52, 593-617.	2.4	1
8	Variogram-Based Descriptors for Comparison and Classification of Rock Texture Images. Mathematical Geosciences, 2020, 52, 451-476.	2.4	6
9	Optimization of a SAG Mill Energy System: Integrating Rock Hardness, Solar Irradiation, Climate Change, and Demand-Side Management. Mathematical Geosciences, 2020, 52, 355-379.	2.4	13
10	An LSTM Approach for SAG Mill Operational Relative-Hardness Prediction. Minerals (Basel,) Tj ETQq0 0 0 rgBT /C	verlock 10 2.0	0 Tf ₇ 50 382 Td
11	Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application. Mining, Metallurgy and Exploration, 2020, 37, 1197-1212.	0.8	16
12	Copper mining: 100% solar electricity by 2030?. Applied Energy, 2020, 262, 114506.	10.1	27
13	Ore-Waste Discrimination with Adaptive Sampling Strategy. Natural Resources Research, 2020, 29, 3079-3102.	4.7	3
14	Recursive convolutional neural networks in a multiple-point statistics framework. Computers and Geosciences, 2020, 141, 104522.	4.2	13
15	Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes. Natural Resources Research, 2020, 29, 3527-3545.	4.7	3
16	Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part II: Effect of ore hardness variability, geometallurgical modeling and demand side management. Minerals Engineering, 2019, 137, 53-67.	4.3	15
17	Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part I: Framework, model development and effect of solar irradiance forecasting. Minerals Engineering, 2019, 137, 68-77.	4.3	12
18	Sampling Strategies for Uncertainty Reduction in Categorical Random Fields: Formulation, Mathematical Analysis and Application to Multiple-Point Simulations. Mathematical Geosciences, 2019,	2.4	5

JuliÃin M Ortiz

#	Article	IF	CITATIONS
19	Change of support using non-additive variables with Gibbs Sampler: Application to metallurgical recovery of sulphide ores. Computers and Geosciences, 2019, 122, 68-76.	4.2	7
20	Sequential Indicator Simulation with Locally Varying Anisotropy – Simulating Mineralized Units in a Porphyry Copper Deposit. Journal of Mining Engineering and Research, 2019, 1, 1-7.	0.3	3
21	Recursive convolutional neural networks in a multiple-point statistics framework. , 2019, , 168-176.		1
22	Performance assessment of antithetic random fields in a stochastic mine planning model. , 2019, , 300-308.		0
23	Multivariate geostatistical simulation using principal component analysis. , 2019, , 76-85.		0
24	A path-level exact parallelization strategy for sequential simulation. Computers and Geosciences, 2018, 110, 10-22.	4.2	2
25	Antithetic random fields applied to mine planning under uncertainty. Computers and Geosciences, 2018, 121, 23-29.	4.2	6
26	A comparison between ACO and Dijkstra algorithms for optimal ore concentrate pipeline routing. Journal of Cleaner Production, 2017, 144, 149-160.	9.3	41
27	Channelized facies recovery based on weighted compressed sensing. , 2016, , .		1
28	Inverse Modeling of Moving Average Isotropic Kernels for Non-parametric Three-Dimensional Gaussian Simulation. Mathematical Geosciences, 2016, 48, 559-579.	2.4	2
29	Analysis and Classification of Natural Rock Textures based on New Transform-based Features. Mathematical Geosciences, 2016, 48, 835-870.	2.4	13
30	Resurrecting GSLIB by Code Optimization and Multi-core Programming. , 2016, , 147-152.		0
31	Reconstruction of channelized geological facies based on RIPless compressed sensing. Computers and Geosciences, 2015, 77, 54-65.	4.2	8
32	Acceleration of the Geostatistical Software Library (GSLIB) by code optimization and hybrid parallel programming. Computers and Geosciences, 2015, 85, 210-233.	4.2	8
33	Multiple-point geostatistical simulation of dykes: application at Sungun porphyry copper system, Iran. Stochastic Environmental Research and Risk Assessment, 2014, 28, 1913-1927.	4.0	28
34	Verifying the high-order consistency of training images with data for multiple-point geostatistics. Computers and Geosciences, 2014, 70, 190-205.	4.2	45
35	Tuning and hybrid parallelization of a genetic-based multi-point statistics simulation code. Parallel Computing, 2014, 40, 144-158.	2.1	7
36	Enhanced coregionalization analysis for simulating vector Gaussian random fields. Computers and Geosciences, 2012, 42, 126-135.	4.2	9

JuliÃin M Ortiz

#	Article	IF	CITATIONS
37	Detecting and quantifying sources of non-stationarity via experimental semivariogram modeling. Stochastic Environmental Research and Risk Assessment, 2012, 26, 247-260.	4.0	9
38	Multiple-Point Geostatistical Simulation Based on Genetic Algorithms Implemented in a Shared-Memory Supercomputer. Quantitative Geology and Geostatistics, 2012, , 103-114.	0.1	4
39	Two approaches to direct block-support conditional co-simulation. Computers and Geosciences, 2011, 37, 1015-1025.	4.2	14
40	Parallel implementation of simulated annealing to reproduce multiple-point statistics. Computers and Geosciences, 2011, 37, 1110-1121.	4.2	42
41	A Comparison of Random Field Models Beyond Bivariate Distributions. Mathematical Geosciences, 2011, 43, 183-202.	2.4	7
42	Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stochastic Environmental Research and Risk Assessment, 2011, 25, 1101-1111.	4.0	37
43	Multiple Point Geostatistical Simulation with Simulated Annealing: Implementation Using Speculative Parallel Computing. Quantitative Geology and Geostatistics, 2010, , 383-394.	0.1	0
44	A methodology to construct training images for vein-type deposits. Computers and Geosciences, 2008, 34, 491-502.	4.2	7
45	On the challenge of using sequential indicator simulation for the estimation of recoverable reserves. International Journal of Mining, Reclamation and Environment, 2008, 22, 285-299.	2.8	6
46	Local recoverable reserves prediction with block LU simulation. International Journal of Mining and Mineral Engineering, 2008, 1, 3.	0.3	7
47	Weighted sample variograms as a tool to better assess the spatial variability of soil properties. Geoderma, 2007, 140, 81-89.	5.1	21
48	Scaling multiple-point statistics to different univariate proportions. Computers and Geosciences, 2007, 33, 191-201.	4.2	7
49	Quantifying Uncertainty in Mineral Resources by Use of Classification Schemes and Conditional Simulations. Mathematical Geosciences, 2006, 38, 445-464.	0.9	19
50	Histogram and variogram inference in the multigaussian model. Stochastic Environmental Research and Risk Assessment, 2005, 19, 48-58.	4.0	18
51	Internal Consistency and Inference of Change-of-support Isofactorial Models. Quantitative Geology and Geostatistics, 2005, , 1057-1066.	0.1	3
52	Shortcomings of multiple indicator kriging for assessing local distributions. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2004, 113, 249-259.	0.8	9
53	Indicator Simulation Accounting for Multiple-Point Statistics. Mathematical Geosciences, 2004, 36, 545-565.	0.9	60