Andrea Vannini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8995328/publications.pdf

Version: 2024-02-01

42 papers

642 citations

16 h-index 23 g-index

42 all docs 42 docs citations

times ranked

42

564 citing authors

#	Article	IF	CITATIONS
1	Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Annals of Applied Biology, 2023, 182, 57-64.	1.3	20
2	Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.). Biology, 2022, 11, 404.	1.3	20
3	Foliar Application of Wood Distillate Alleviates Ozone-Induced Damage in Lettuce (Lactuca sativa L.). Toxics, 2022, 10, 178.	1.6	15
4	Bioaccumulation of potentially toxic elements in some lichen species from two remote sites of Tunisia., 2022, 77, 2469-2473.		5
5	Effects of wood distillate and soy lecithin on the photosynthetic performance and growth of lettuce (Lactuca sativa L.). SN Applied Sciences, 2021, 3, 1.	1.5	12
6	Modeling heavy metal release in the epiphytic lichen Evernia prunastri. Environmental Science and Pollution Research, 2021, 28, 27392-27397.	2.7	1
7	Accumulation and Phytotoxicity of Two Commercial Biocides in the Lichen Evernia prunastri and the Moss Brachythecium sp Stresses, 2021, 1, 69-77.	1.8	1
8	Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Applied Sciences (Switzerland), 2021, 11, 7023.	1.3	7
9	Biological Effects of Air Pollution on Sensitive Bioindicators: A Case Study from Milan, Italy. Urban Science, 2021, 5, 64.	1.1	O
10	Lichens as monitors of the atmospheric deposition of potentially toxic elements in high elevation Mediterranean ecosystems. Science of the Total Environment, 2021, 798, 149369.	3.9	8
11	Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce. Toxics, 2021, 9, 268.	1.6	9
12	Comparison of the Mineral and Nutraceutical Profiles of Elephant Garlic (Allium ampeloprasum L.) Grown in Organic and Conventional Fields of Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Biology, 2021, 10, 1058.	1.3	11
13	Influence of Moderate Cd and Pb Soil Pollution on Seed Development, Photosynthetic Performance and Foliar Accumulation in the Medicinal Plant Hypericum perforatum. Pollutants, 2021, 1, 1-9.	1.0	2
14	Accumulation and Release of Mercury in the Lichen Evernia prunastri (L.) Ach. Biology, 2021, 10, 1198.	1.3	3
15	The application protocol impacts the effectiveness of biocides against lichens. International Biodeterioration and Biodegradation, 2020, 155, 105105.	1.9	11
16	Can Chitin and Chitosan Replace the Lichen Evernia prunastri for Environmental Biomonitoring of Cu and Zn Air Contamination?. Biology, 2020, 9, 301.	1.3	3
17	Effects of wood distillate (pyroligneous acid) on sensitive bioindicators (lichen and moss). Ecotoxicology and Environmental Safety, 2020, 204, 111117.	2.9	18
18	Does air pollution influence the success of species translocation? Trace elements, ultrastructure and photosynthetic performances in transplants of a threatened forest macrolichen. Ecological Indicators, 2020, 117, 106666.	2.6	9

#	Article	IF	Citations
19	Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid). Plants, 2020, 9, 1179.	1.6	14
20	Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere, 2020, 256, 127155.	4.2	25
21	Uptake and release of copper ions in epiphytic lichens. Biologia (Poland), 2020, 75, 1547-1552.	0.8	5
22	The Water Content Drives the Susceptibility of the Lichen Evernia prunastri and the Moss Brachythecium sp. to High Ozone Concentrations. Biology, 2020, 9, 90.	1.3	8
23	Magnetic Emissions from Brake Wear are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy). Applied Sciences (Switzerland), 2020, 10, 2073.	1.3	37
24	Contribution of submicronic (PM1) and coarse (PM>1) particulate matter deposition to the heavy metal load of lichens transplanted along a busy road. Chemosphere, 2019, 231, 121-125.	4.2	16
25	Lichens "travelling―in smokers' cars are suitable biomonitors of indoor air quality. Ecological Indicators, 2019, 103, 576-580.	2.6	22
26	New Interpretative Scales for Lichen Bioaccumulation Data: The Italian Proposal. Atmosphere, 2019, 10, 136.	1.0	30
27	High-light stress in wet and dry thalli of the endangered Mediterranean lichen Seirophora villosa (Ach.) Frödén: does size matter?. Mycological Progress, 2019, 18, 463-470.	0.5	11
28	Impact of forest management on threatened epiphytic macrolichens: evidence from a Mediterranean mixed oak forest (Italy). IForest, 2019, 12, 383-388.	0.5	12
29	Competition between heavy metal ions for binding sites in lichens: Implications for biomonitoring studies. Chemosphere, 2018, 199, 655-660.	4.2	25
30	Toxicity of Diclofenac in the Fern Azolla filiculoides and the Lichen Xanthoria parietina. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 430-437.	1.3	20
31	One year of transplant: Is it enough for lichens to reflect the new atmospheric conditions?. Ecological Indicators, 2018, 88, 495-502.	2.6	22
32	Application of commercial biocides to lichens: Does a physiological recovery occur over time?. International Biodeterioration and Biodegradation, 2018, 129, 189-194.	1.9	17
33	Physiological and ultrastructural effects of acute ozone fumigation in the lichen Xanthoria parietina: the role of parietin and hydration state. Environmental Science and Pollution Research, 2018, 25, 8104-8112.	2.7	11
34	May lichen biomonitoring of air pollution be used for environmental justice assessment? A case study from an area of N Italy with a municipal solid waste incinerator. Environmental Forensics, 2018, 19, 265-276.	1.3	13
35	In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLoS ONE, 2018, 13, e0195717.	1.1	35
36	Species- and site-specific efficacy of commercial biocides and application solvents against lichens. International Biodeterioration and Biodegradation, 2017, 123, 127-137.	1.9	35

3

#	Article	IF	CITATIONS
37	The biological response chain to pollution: a case study from the "ltalian Triangle of Death―assessed with the liverwort Lunularia cruciata. Environmental Science and Pollution Research, 2017, 24, 26185-26193.	2.7	30
38	Seasonal variations in intracellular trace element content and physiological parameters in the lichen Evernia prunastri transplanted to an urban environment. Acta Botanica Croatica, 2017, 76, 171-176.	0.3	23
39	Bioaccumulation, physiological and ultrastructural effects of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr Chemosphere, 2016, 164, 233-240.	4.2	14
40	Uptake and toxicity of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr Ecotoxicology and Environmental Safety, 2015, 122, 193-197.	2.9	14
41	Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C) Tj ETQq1 1 0.	784314 rg	;BT /Overlock
42	Estimating Atmospheric Mercury Concentrations with Lichens. Environmental Science & Emp; Technology, 2014, 48, 8754-8759.	4.6	31