Antoine Daudin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8995256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrodeoxygenation pathways catalyzed by MoS2 and NiMoS active phases: A DFT study. Journal of Catalysis, 2011, 279, 276-286.	6.2	118
2	Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Applied Catalysis B: Environmental, 2014, 145, 167-176.	20.2	108
3	Deoxygenation mechanisms on Ni-promoted MoS2 bulk catalysts: A combined experimental and theoretical study. Journal of Catalysis, 2012, 286, 153-164.	6.2	107
4	Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review. Oil and Gas Science and Technology, 2013, 68, 753-763.	1.4	83
5	A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases. Journal of Catalysis, 2008, 260, 276-287.	6.2	66
6	Lignin hydroconversion on MoS2-based supported catalyst: Comprehensive analysis of products and reaction scheme. Applied Catalysis B: Environmental, 2016, 184, 153-162.	20.2	45
7	Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts. Journal of Catalysis, 2007, 248, 111-119.	6.2	42
8	Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides. Catalysis Today, 2008, 130, 221-230.	4.4	40
9	From powder to extrudate zeolite-based bifunctional hydroisomerization catalysts: on preserving zeolite integrity and optimizing Pt location. Journal of Industrial and Engineering Chemistry, 2018, 62, 72-83.	5.8	40
10	Effect of H2S partial pressure on the transformation of a model FCC gasoline olefin over unsupported molybdenum sulfide-based catalysts. Applied Catalysis A: General, 2008, 344, 198-204.	4.3	38
11	Quantification of metalâ€acid balance in hydroisomerization catalysts: A step further toward catalyst design. AICHE Journal, 2017, 63, 2864-2875.	3.6	35
12	A DFT Study of CoMoS and NiMoS Catalysts: from Nano-Crystallite Morphology to Selective Hydrodesulfurization. Oil and Gas Science and Technology, 2009, 64, 707-718.	1.4	30
13	A systematic study on mixtures of Pt/zeolite as hydroisomerization catalysts. Catalysis Science and Technology, 2017, 7, 1095-1107.	4.1	30
14	Deep HDS of FCC gasoline over alumina supported CoMoS catalyst: Inhibiting effects of carbon monoxide and water. Applied Catalysis B: Environmental, 2016, 183, 317-327.	20.2	28
15	New Mo–V based oxidic precursor for the hydrotreatment of residues. Applied Catalysis B: Environmental, 2010, 98, 39-48.	20.2	23
16	Sensitivity of supported MoS2-based catalysts to carbon monoxide for selective HDS of FCC gasoline: Effect of nickel or cobalt as promoter. Applied Catalysis B: Environmental, 2017, 206, 24-34.	20.2	23
17	Insight into sulphur compounds and promoter effects on Molybdenum-based catalysts for selective HDS of FCC gasoline. Applied Catalysis A: General, 2010, 388, 188-195.	4.3	20
18	Active sites speciation of supported CoMoS phase probed by NO molecule: A combined IR and DFT study. Journal of Catalysis, 2018, 361, 62-72.	6.2	20

ANTOINE DAUDIN

#	Article	IF	CITATIONS
19	Nanoscale insights into Pt-impregnated mixtures of zeolites. Journal of Materials Chemistry A, 2017, 5, 16822-16833.	10.3	19
20	Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts. Journal of Industrial and Engineering Chemistry, 2019, 71, 167-176.	5.8	19
21	Bifunctional Intimacy and its Interplay with Metalâ€Acid Balance in Shaped Hydroisomerization Catalysts. ChemCatChem, 2020, 12, 4582-4592.	3.7	19
22	Elucidation of the zeolite role on the hydrogenating activity of Pt-catalysts. Catalysis Communications, 2017, 89, 152-155.	3.3	16
23	Interplay of the adsorption of light and heavy paraffins in hydroisomerization over H-beta zeolite. Catalysis Science and Technology, 2019, 9, 5368-5382.	4.1	12
24	Impact of CO on the transformation of a model FCC gasoline over CoMoS/Al2O3 catalysts: A combined kinetic and DFT approach. Applied Catalysis B: Environmental, 2010, 97, 323-332.	20.2	11
25	Bridging the gap between academic and industrial hydrocracking: on catalyst and operating conditions' effects. Catalysis Science and Technology, 2020, 10, 5136-5148.	4.1	11
26	Balance between (De)hydrogenation and Acid Sites: Comparison between Sulfide-Based and Pt-Based Bifunctional Hydrocracking Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 12686-12695.	3.7	11
27	Synergies, cooperation and other effects: a review for hydroconversion catalysts. Catalysis Today, 2020, 356, 260-270.	4.4	10
28	Investigation of cooperative effects between Pt/zeolite hydroisomerization catalysts through kinetic simulations. Catalysis Today, 2018, 312, 66-72.	4.4	5
29	Production de biocarburants à partir de la ressource oléagineuse. Oleagineux Corps Gras Lipides, 2012, 19, 29-38.	0.2	4
30	Deep hydrodesulfurization of FCC gasoline and gas oil cuts: Comparison of CO effect, a by-product from biomass. Comptes Rendus Chimie, 2016, 19, 1266-1275.	0.5	3