
Jeong-eun Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects of collagen scaffolds for muscle regeneration. , 2022, , 347-361.		1
2	Macro- and microporous polycaprolactone/duck's feet collagen scaffold fabricated by combining facile phase separation and particulate leaching techniques to enhance osteogenesis for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1025-1042.	1.9	5
3	Biomimetic sponge using duck's feet derived collagen and hydroxyapatite to promote bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 769-782.	1.9	3
4	Characterization of Taurine/Silk Fibroin Blend Film for Application as a Carrier for Corneal Endothelial Cell Transplantation. Macromolecular Research, 2022, 30, 254-260.	1.0	1
5	Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering. In Vitro Models, 2022, 1, 197-207.	1.0	3
6	Comparative Study on the Effect of the Different Harvesting Sources of Demineralized Bone Particles on the Bone Regeneration of a Composite Gellan Gum Scaffold for Bone Tissue Engineering Applications. ACS Applied Bio Materials, 2021, 4, 1900-1911.	2.3	9
7	Dopamine-Functionalized Gellan Gum Hydrogel as a Candidate Biomaterial for a Retinal Pigment Epithelium Cell Delivery System. ACS Applied Bio Materials, 2021, 4, 1771-1782.	2.3	14
8	Pluronic F-127/Silk Fibroin for Enhanced Mechanical Property and Sustained Release Drug for Tissue Engineering Biomaterial. Materials, 2021, 14, 1287.	1.3	19
9	Release Behavior of Telmisartan/Amlodipine Combination Drug According to Polymer Type. Macromolecular Research, 2021, 29, 217-223.	1.0	1
10	Improvement of Medication Adherence and Controlled Drug Release by Optimized Acetaminophen Formulation. Macromolecular Research, 2021, 29, 342-350.	1.0	0
11	Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 936-947.	1.3	13
12	Enhanced Silk Fibroin-Based Film Scaffold Using Curcumin for Corneal Endothelial Cell Regeneration. Macromolecular Research, 2021, 29, 713-719.	1.0	1
13	Fabrication of POX/PLGA Scaffold for the Potential Application of Tissue Engineering and Cell Transplantation. Macromolecular Research, 2020, 28, 196-202.	1.0	8
14	A BMSCsâ€laden quercetin/duck's feet collagen/hydroxyapatite sponge for enhanced bone regeneration. Journal of Biomedical Materials Research - Part A, 2020, 108, 784-794.	2.1	39
15	Alleviated Side Effects and Improved Efficiency of Omeprazole Using Oral Thin Film: In Vitro Evaluation. Macromolecular Research, 2020, 28, 417-424.	1.0	6
16	Preparation and characterization of an injectable dexamethasone-cyclodextrin complexes-loaded gellan gum hydrogel for cartilage tissue engineering. Journal of Controlled Release, 2020, 327, 747-765.	4.8	36
17	Progress in Silk Fibroin Based Composite Scaffold/Hydrogel: Silk Fibroin/PEG Hydrogel for the RPE Regeneration a Promising Biomaterial for Clinical Application. Frontiers in Materials, 2020, 7, .	1.2	6
18	Fabrication and Characterization of Silk Fibroin Microfiber-Incorporated Bone Marrow Stem Cell Spheroids to Promote Cell–Cell Interaction and Osteogenesis. ACS Omega, 2020, 5, 18021-18027.	1.6	12

#	Article	IF	CITATIONS
19	Application of double network of gellan gum and pullulan for bone marrow stem cells differentiation towards chondrogenesis by controlling viscous substrates. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1592-1603.	1.3	13
20	Characterization of Gelatin/Gellan Gum/Glycol Chitosan Ternary Hydrogel for Retinal Pigment Epithelial Tissue Reconstruction Materials. ACS Applied Bio Materials, 2020, 3, 6079-6087.	2.3	25
21	Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial. Macromolecular Research, 2020, 28, 979-985.	1.0	20
22	Characterization of Platelet-Rich Plasma/Gellan Gum Hydrogel Composite for Biological Performance to Induce Chondrogenesis from Adipose-Derived Stem Cells. Macromolecular Research, 2020, 28, 1098-1103.	1.0	1
23	Sustained-Released Formulation of Nifedipine Solid Dispersion with Various Polymers. Macromolecular Research, 2020, 28, 553-557.	1.0	4
24	Characterization and Potential of a Bilayered Hydrogel of Gellan Gum and Demineralized Bone Particles for Osteochondral Tissue Engineering. ACS Applied Materials & Interfaces, 2020, 12, 34703-34715.	4.0	19
25	Exosome mediated transfer of miRNAâ€140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. Journal of Cellular Biochemistry, 2020, 121, 3642-3652.	1.2	41
26	Accelerating bone defects healing in calvarial defect model using 3D cultured bone marrowâ€derived mesenchymal stem cells on demineralized bone particle scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 563-574.	1.3	0
27	Osteochondral and bone tissue engineering scaffold prepared from Gallus var domesticus derived demineralized bone powder combined with gellan gum for medical application. International Journal of Biological Macromolecules, 2020, 149, 381-394.	3.6	15
28	Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. International Journal of Biological Macromolecules, 2020, 158, 452-460.	3.6	40
29	Enhancing Osteochondral Tissue Regeneration of Gellan Gum by Incorporating Gallus gallus var Domesticus-Derived Demineralized Bone Particle. Advances in Experimental Medicine and Biology, 2020, 1250, 79-93.	0.8	1
30	Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. Advances in Experimental Medicine and Biology, 2020, 1250, 3-13.	0.8	1
31	Biomimetic Approaches for Regenerative Engineering. , 2019, , 483-495.		2
32	Evaluation of cartilage regeneration of chondrocyte encapsulated gellan gum-based hyaluronic acid blended hydrogel. International Journal of Biological Macromolecules, 2019, 141, 51-59.	3.6	49
33	UV-Irradiated RPE Cells Assist Differentiation of Bone Marrow Derived Mesenchymal Stem Cells into RPE Cells Under a Direct Co-Culture Environment. Macromolecular Research, 2019, 27, 781-788.	1.0	0
34	Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels. International Journal of Biological Macromolecules, 2019, 130, 220-228.	3.6	37
35	Injectable taurine-loaded alginate hydrogels for retinal pigment epithelium (RPE) regeneration. Materials Science and Engineering C, 2019, 103, 109787.	3.8	26
36	Effect of different concentration of demineralized bone powder with gellan gum porous scaffold for the application of bone tissue regeneration. International Journal of Biological Macromolecules, 2019, 134, 749-758.	3.6	23

#	Article	IF	CITATIONS
37	Improved Rapid Action of Dapoxetine Hydrochloride & L-arginine Solid Dispersion Using Film Formulation. Macromolecular Research, 2019, 27, 354-359.	1.0	3
38	Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability. Macromolecular Research, 2019, 27, 558-564.	1.0	14
39	Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules, 2019, 24, 4514.	1.7	72
40	Evaluation of Chondrogenic Differentiation Ability of Bone Marrow Mesenchymal Stem Cells in Silk Fibroin/Gellan Gum Hydrogels Using miR-30. Macromolecular Research, 2019, 27, 369-376.	1.0	16
41	Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 263-275.	1.9	20
42	Evaluation of silymarin/duck's feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Materials Science and Engineering C, 2019, 97, 347-355.	3.8	22
43	Formulation of Double-layer Tadalafil and Amlodipine Complex Tablets to Treat Erectile Dysfunction and Hypertension. Porrime, 2019, 43, 274-281.	0.0	1
44	Evaluation of Lansoprazole Enteric Hard Capsule Encapsulated by Sodium Alginic Acid. Porrime, 2019, 43, 415-419.	0.0	1
45	Evaluation of Metformin Tablet Using Wet Granulation for Sustained Release. Porrime, 2019, 43, 410-414.	0.0	0
46	Three-dimensional duck's feet collagen/PLGA scaffold for chondrification: role of pore size and porosity. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 932-941.	1.9	10
47	Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 984-996.	1.9	13
48	Silk Fibroin-Based Scaffold for Bone Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1077, 371-387.	0.8	41
49	Improving Solubility of the Telmisartan that is Poorly Water Soluble by Wet Granulation and Vitrification Process. Macromolecular Research, 2018, 26, 1004-1010.	1.0	1
50	Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. ACS Applied Materials & Interfaces, 2018, 10, 32955-32964.	4.0	53
51	Enhanced retinal pigment epithelium (RPE) regeneration using curcumin/alginate hydrogels: In vitro evaluation. International Journal of Biological Macromolecules, 2018, 117, 546-552.	3.6	20
52	Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration. Nanomaterials, 2018, 8, 290.	1.9	24
53	Evaluation of Saponin Loaded Gellan Gum Hydrogel Scaffold for Cartilage Regeneration. Macromolecular Research, 2018, 26, 724-729.	1.0	13
54	Effect of Cartilage Regeneration on Gellan Gum and Silk Fibroin. Porrime, 2018, 42, 298-302.	0.0	3

#	Article	IF	CITATIONS
55	Characterization and Improved Dissolution Rate of Clopidogrel Solid Dispersion. Porrime, 2018, 42, 275-279.	0.0	0
56	In vivo bone regeneration evaluation of duck's feet collagen/PLGA scaffolds in rat calvarial defect. Macromolecular Research, 2017, 25, 994-999.	1.0	19
57	Osteogenesis evaluation of duck's feet-derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomaterials Research, 2017, 21, 2.	3.2	14
58	Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. International Journal of Biological Macromolecules, 2017, 95, 14-23.	3.6	47
59	Effects of small intestinal submucosa content on the adhesion and proliferation of retinal pigment epithelial cells on SIS-PLGA films. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 99-108.	1.3	10
60	Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 44-57.	1.3	56
61	ZnO nanonails for photocatalytic degradation of crystal violet dye under UV irradiation. AIMS Materials Science, 2017, 4, 267-276.	0.7	14
62	Effect of Silk Sponge Concentrations on Skin Regeneration. Porrime, 2017, 41, 1.	0.0	2
63	Evaluation of Gelatin and Gellan Gum Blended Hydrogel for Cartilage Regeneration. Porrime, 2017, 41, 619-623.	0.0	3
64	Cartilage Regeneration Using Hesperidin-Containing Gellan Gum Scaffolds. Porrime, 2017, 41, 670-674.	0.0	2
65	Osteogenic Differentiation of Rabbit Bone Marrow Mesenchymal Stem Cell in Several Natural Source Biomaterials/PLGA Hybrid Scaffolds. Porrime, 2017, 41, 867-873.	0.0	1
66	A Comprehensive Study on Cartilage Regeneration Using Gellan-gum/Chondroitin Sulfate Hybrid Hydrogels. Porrime, 2017, 41, 962-966.	0.0	3
67	Osteogenic Differentiation of Rat Adipose Stem Cells in Demineralized Bone Particles Sponges. Porrime, 2017, 41, 13.	0.0	0
68	Skin regeneration using duck's feet derived collagen and poly(vinyl alcohol) scaffold. Macromolecular Research, 2016, 24, 359-365.	1.0	10
69	Evaluation of the Therapeutic Potential In vitro and In vivo of the SIS/PLGA Scaffolds for Costal Cartilage Regeneration. Macromolecular Research, 2016, 24, 400-408.	1.0	2
70	Inflammatory response study of gellan gum impregnated duck's feet derived collagen sponges. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1495-1506.	1.9	12
71	Fabrication of duck's feet collagen–silk hybrid biomaterial for tissue engineering. International Journal of Biological Macromolecules, 2016, 85, 442-450.	3.6	32
72	Dissolution Properties of Lercanidipine Solid Dispersion Manufactured Water – Soluble Polymer PVP K-30. Porrime, 2016, 40, 33.	0.0	2

#	Article	IF	CITATIONS
73	Effect of Degumming Time of Silk Films on Growth of Corneal Endothelial Cells for Tissue Engineered Endothelialized Neo-Corneas. Porrime, 2016, 40, 181.	0.0	1
74	Evaluation of Osteogenesis on Duck`s Feet Derived Collagen and Demineralized Bone Particles Sponges. Porrime, 2016, 40, 858.	0.0	3
75	Osteogenesis Differentiation of Rabbit Bone Marrow-mesenchymal Stem Cells in Silk Scaffold Loaded with Various Ratios of Hydroxyapatite. Porrime, 2016, 40, 915.	0.0	2
76	Recent Advances in Regenerative Approaches to Intervertebral Disc Degeneration. Biosystems and Biorobotics, 2016, , 427-444.	0.2	0
77	Inflammatory Response and Antioxidation on Vitamin C Impregnated Poly(lactide-co-glycolide) Scaffold. Porrime, 2016, 40, 85.	0.0	0
78	The potential of DBP gels containing intervertebral disc cells for annulus fibrosus supplementation:in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E98-E107.	1.3	4
79	Effect of pore sizes of silk scaffolds for cartilage tissue engineering. Macromolecular Research, 2015, 23, 1091-1097.	1.0	51
80	Effects of purified alginate sponge on the regeneration of chondrocytes: <i>in vitro</i> and <i>in vivo</i> . Journal of Biomaterials Science, Polymer Edition, 2015, 26, 181-195.	1.9	13
81	Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 92-110.	1.9	8
82	Effect of Duck's Feet Derived Collagen Sponge on Skin Regeneration: In Vitro Study. Porrime, 2015, 39, 493-498.	0.0	5
83	Characterization and Effect of Inflammatory Reaction of Duck-Feet Derived Collagen/Poly(lactic-co-glycolide)(PLGA) Hybrid Scaffold. Porrime, 2015, 39, 837.	0.0	5
84	Osteogenic Effect of Hybrid Scaffolds Composed of Duck Feet Collagen and PLGA. Porrime, 2015, 39, 846.	0.0	5
85	Sustained Release Formulation and Characterization of Nifedipine Three-layered Tablet Using Various Polymers. Porrime, 2015, 39, 739.	0.0	Ο
86	Proliferation and Growth Behavior of Annulus Fibrosus Cells on Hesperidin Loaded Poly(lactide-co-glycolic acid) Scaffold. Porrime, 2015, 39, 782.	0.0	0
87	Recent advances in tissue-engineered corneal regeneration. Inflammation and Regeneration, 2014, 34, 004-014.	1.5	8
88	Effect of small intestinal submucosa sponges on the attachment and proliferation behavior of Schwann cells. Macromolecular Research, 2014, 22, 1253-1260.	1.0	4
89	PORCINE SMALL INTESTINAL SUBMUCOSA REDUCES THE INFLAMMATORY REACTION OF POLY(LACTIDE-CO-GLYCOLIDE) FILMS. Biomedical Engineering - Applications, Basis and Communications, 2014, 26, 1450032.	0.3	1
90	Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 279-290.	1.3	16

#	Article	IF	CITATIONS
91	Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation. Materials Letters, 2014, 136, 171-174.	1.3	95
92	Tissue Engineered Catilage Reconstruction with Alginate Sponge Containing Demineralized Bone Particles. Porrime, 2014, 38, 278-285.	0.0	3
93	Effect of Extracellular Matrix on the Growth Behavior of Corneal Endothelial Cells to Poly(lactic-co-glycolic acid) Film. Porrime, 2014, 38, 702-707.	0.0	0
94	Effect of hyaluronic acid (HA) in a HA/PLGA scaffold on annulus fibrosus regeneration: In vivo tests. Macromolecular Research, 2013, 21, 1075-1082.	1.0	10
95	Release behavior of cilostazol according to the fabrication methods and ratio of HPMC/PVP. Macromolecular Research, 2013, 21, 971-976.	1.0	5
96	Reduction of inflammatory reaction in the use of purified alginate microcapsules. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1084-1098.	1.9	29
97	Effect of Silk in Silk/PLGA Hybrid Films on Attachment and Proliferation of Human Aortic Endothelial Cells. Porrime, 2013, 37, 127-134.	0.0	2
98	Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells. Porrime, 2013, 37, 141-147.	0.0	1
99	Effects of Demineralized Bone Particle Loaded Poly(lactic-co-glycolic acid) Scaffolds on the Attachment and Proliferation of Costal Cartilage Cells. Porrime, 2013, 37, 632-637.	0.0	1
100	Regeneration of Intervertebral Disc Using Poly(lactic-co-glycolic acid) Scaffolds Included Demineralized Bone Particle In Vivo. Porrime, 2013, 37, 669-676.	0.0	1
101	Effect of Inflammatory Responses to PLGA Films Incorporated Hesperidin: In vitro and In vivo Results. Porrime, 2013, 37, 323-331.	0.0	0
102	Effect of demineralized bone particles (DBP) on cell growth and ECM secretion in PLGA/DBP hybrid scaffold for cartilage tissue engineering. Macromolecular Research, 2012, 20, 1044-1053.	1.0	4
103	Demineralized Bone Particle Impregnated Poly(l-Lactide- co -Glycolide) Scaffold for Application in Tissue-Engineered Intervertebral Discs. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2153-2170.	1.9	5
104	Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment. Porrime, 2012, 36, 789-794.	0.0	2
105	Effect of Ratio of Demineralized Bone Powder with Alginate Microcapsules on Articular Cartilage Regeneration. Porrime, 2012, 36, 768-775.	0.0	0
106	A Study on Proliferation and Behavior of Retinal Pigment Epithelial Cells on Purified Alginate Films. International Journal of Stem Cells, 2011, 4, 105-112.	0.8	10
107	Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test. Porrime, 2011, 35, 499-504.	0.0	0