Wenkang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8994844/publications.pdf

Version: 2024-02-01

64 papers

2,683 citations

28 h-index 50 g-index

70 all docs

70 docs citations

times ranked

70

2600 citing authors

#	Article	IF	CITATIONS
1	Characterization of fine particles during the 2014 Asia-Pacific economic cooperation summit: Number concentration, size distribution and sources. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1303228.	1.6	24
2	Assessment of health benefit of PM2.5 reduction during COVID-19 lockdown in China and separating contributions from anthropogenic emissions and meteorology. Journal of Environmental Sciences, 2022, 115, 422-431.	6.1	19
3	Characterization and source identification of submicron aerosol during serious haze pollution periods in Beijing. Journal of Environmental Sciences, 2022, 112, 25-37.	6.1	11
4	Air stagnation in China: Spatiotemporal variability and differing impact on PM2.5 and O3 during 2013–2018. Science of the Total Environment, 2022, 819, 152778.	8.0	17
5	The effects of number and mass concentration of aerosol components on scattering coefficients in Xianghe, southeast of Beijing, China $\hat{a}\in$ A case study. Atmospheric Environment, 2022, 272, 118938.	4.1	3
6	Environmental effects of China's coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China. Atmospheric Research, 2022, 268, 106015.	4.1	10
7	Variation characteristics of air combined pollution in Beijing City. Atmospheric Research, 2022, 274, 106197.	4.1	13
8	Spatial representativeness of PM2.5 monitoring stations and its implication for health assessment. Air Quality, Atmosphere and Health, 2022, 15, 1571-1581.	3.3	5
9	Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. Journal of Environmental Sciences, 2021, 100, 1-10.	6.1	59
10	Physiochemistry characteristics and sources of submicron aerosols at the background area of North China Plain: Implication of air pollution control in heating season. Atmospheric Research, 2021, 249, 105291.	4.1	10
11	Estimated contribution of vehicular emissions to carbonaceous aerosols in urban Beijing, China. Atmospheric Research, 2021, 248, 105153.	4.1	10
12	Source apportionment of PM2.5 and its optical properties during a regional haze episode over north China plain. Atmospheric Pollution Research, 2021, 12, 89-99.	3.8	8
13	Chemical composition, water content and size distribution of aerosols during different development stages of regional haze episodes over the North China Plain. Atmospheric Environment, 2021, 245, 118020.	4.1	19
14	Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions. Environmental Pollution, 2021, 268, 115855.	7. 5	43
15	Particulate matter trends and quantification of the spring sand-dust contribution in Hohhot, Inner Mongolia, from 2013 to 2017. Atmospheric and Oceanic Science Letters, 2021, 14, 100036.	1.3	5
16	Comparative research on visibility and light extinction of PM2.5 components during 2014–17 in the North China plain. Atmospheric and Oceanic Science Letters, 2021, 14, 100034.	1.3	5
17	Seasonal variations in the highly time-resolved aerosol composition, sources and chemical processes of background submicron particles in the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 4521-4539.	4.9	16
18	Acute effects of air pollution on lupus nephritis in patients with systemic lupus erythematosus: A multicenter panel study in China. Environmental Research, 2021, 195, 110875.	7.5	7

#	Article	IF	CITATIONS
19	Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. Science of the Total Environment, 2021, 768, 144538.	8.0	26
20	Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 2021, 771, 145306.	8.0	27
21	Insights into the chemistry of aerosol growth in Beijing: Implication of fine particle episode formation during wintertime. Chemosphere, 2021, 274, 129776.	8.2	11
22	Effects of different stagnant meteorological conditions on aerosol chemistry and regional transport changes in Beijing, China. Atmospheric Environment, 2021, 258, 118483.	4.1	4
23	Contributions of aerosol chemical composition and sources to light extinction during haze and non-haze days in Taiyuan, China. Atmospheric Pollution Research, 2021, 12, 101140.	3.8	3
24	A comprehensive evaluation of aerosol extinction apportionment in Beijing using a high-resolution time-of-flight aerosol mass spectrometer. Science of the Total Environment, 2021, 783, 146976.	8.0	5
25	Reduced volatility of aerosols from surface emissions to the top of the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14749-14760.	4.9	6
26	The relationship between PM2.5 pollution and aerosol radiative forcing in a heavy industrial city, Taiyuan, in China. Atmospheric Research, 2021, 267, 105935.	4.1	5
27	Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China. Atmospheric Environment, 2020, 220, 117070.	4.1	34
28	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	4.9	36
29	Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 2020, 134, 105283.	10.0	73
30	Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain. Science of the Total Environment, 2020, 705, 135803.	8.0	18
31	Significant Changes in Chemistry of Fine Particles in Wintertime Beijing from 2007 to 2017: Impact of Clean Air Actions. Environmental Science & Envir	10.0	84
32	Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics, 2020, 20, 8181-8200.	4.9	24
33	Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical processes. Atmospheric Chemistry and Physics, 2020, 20, 4575-4592.	4.9	31
34	A new approach of the normalization relationship between PM2.5 and visibility and the theoretical threshold, a case in north China. Atmospheric Research, 2020, 245, 105054.	4.1	13
35	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	9.5	284
36	Levels and sources of hourly PM2.5-related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin. Science of the Total Environment, 2020, 744, 140840.	8.0	54

#	Article	IF	Citations
37	Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China. Environmental Pollution, 2020, 266, 115014.	7.5	9
38	Vertically decreased VOC concentration and reactivity in the planetary boundary layer in winter over the North China Plain. Atmospheric Research, 2020, 240, 104930.	4.1	32
39	Effect of the "coal to gas―project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin. Atmospheric Research, 2020, 241, 104977.	4.1	46
40	Real-time physiochemistry of urban aerosols during a regional haze episode by a single-particle aerosol mass spectrometer: Mixing state, size distribution and source apportionment. Atmospheric Pollution Research, 2020, 11, 1329-1338.	3.8	5
41	Impact of the coal banning zone on visibility in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2019, 692, 402-410.	8.0	36
42	Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain. Atmospheric Environment, 2019, 214, 116869.	4.1	20
43	Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement. Atmospheric Chemistry and Physics, 2019, 19, 8569-8590.	4.9	81
44	Trends in particulate matter and its chemical compositions in China from 2013–2017. Science China Earth Sciences, 2019, 62, 1857-1871.	5.2	111
45	Decreased gaseous carbonyls in the North China plain from 2004 to 2017 and future control measures. Atmospheric Environment, 2019, 218, 117015.	4.1	12
46	Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism. Science of the Total Environment, 2019, 687, 1073-1086.	8.0	61
47	Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment. Science of the Total Environment, 2019, 685, 116-123.	8.0	30
48	Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain. Journal of Environmental Sciences, 2019, 83, 152-160.	6.1	50
49	Case study of the effects of aerosol chemical composition and hygroscopicity on the scattering coefficient in summer, Xianghe, southeast of Beijing, China. Atmospheric Research, 2019, 225, 81-87.	4.1	10
50	The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. Environment International, 2019, 126, 171-183.	10.0	73
51	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	4.9	61
52	A closure study of aerosol optical properties as a function of RH using a \hat{l}^2 -AMS-BC-Mie model in Beijing, China. Atmospheric Environment, 2019, 197, 1-13.	4.1	11
53	Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei. Atmospheric Chemistry and Physics, 2018, 18, 4897-4910.	4.9	78
54	Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmospheric Research, 2018, 203, 105-117.	4.1	77

#	Article	IF	CITATION
55	Characteristics of complex air pollution in typical cities of North China. Atmospheric and Oceanic Science Letters, 2018, 11, 29-36.	1.3	13
56	Characteristics of PM _{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmospheric Chemistry and Physics, 2018, 18, 8849-8871.	4.9	144
57	Mortality and air pollution in Beijing: The long-term relationship. Atmospheric Environment, 2017, 150, 238-243.	4.1	69
58	Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of the Total Environment, 2016, 572, 289-300.	8.0	28
59	The observationâ€based relationships between PM _{2.5} and AOD over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,701.	3.3	47
60	Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy. Atmospheric Environment, 2016, 141, 197-202.	4.1	90
61	The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. Bulletin of the American Meteorological Society, 2015, 96, 1137-1155.	3. 3	115
62	Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study. Environmental Science and Pollution Research, 2015, 22, 627-642.	5. 3	180
63	The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmospheric Research, 2014, 138, 179-188.	4.1	97
64	Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China. Atmospheric Chemistry and Physics. 2014. 14. 2419-2429.	4.9	70