List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8994677/publications.pdf Version: 2024-02-01

		41323	53190
131	8,119	49	85
papers	citations	h-index	g-index
100	100	100	5010
132	132	132	5212
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 2007, 90, 211-237.	0.7	542
2	Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 375-387.	0.7	422
3	Ultraviolet vision and mate choice in zebra finches. Nature, 1996, 380, 433-435.	13.7	397
4	Ultraviolet Vision in Birds. Advances in the Study of Behavior, 2000, 29, 159-214.	1.0	378
5	Plumage Reflectance and the Objective Assessment of Avian Sexual Dichromatism. American Naturalist, 1999, 153, 183-200.	1.0	371
6	Ultraviolet plumage colors predict mate preferences in starlings. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8618-8621.	3.3	329
7	Visual Pigments, Oil Droplets and Cone Photoreceptor Distribution in the European Starling (<i>Sturnus Vulgaris</i>). Journal of Experimental Biology, 1998, 201, 1433-1446.	0.8	179
8	Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 1989, 146, 1-20.	0.8	157
9	Interspecific variation in the visual pigments of deep-sea fishes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 164, 513-529.	0.7	151
10	The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. Journal of Experimental Biology, 2001, 204, 3333-3344.	0.8	139
11	Non-polarizing broadband multilayer reflectors in fish. Nature Photonics, 2012, 6, 759-763.	15.6	137
12	Visual pigment polymorphism in the guppy poecilia reticulata. Vision Research, 1987, 27, 1243-1252.	0.7	136
13	Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 1989, 146, 1-20.	0.8	135
14	The eyes of deep-sea fish I: Lens pigmentation, tapeta and visual pigments. Progress in Retinal and Eye Research, 1998, 17, 597-636.	7.3	132
15	Retinal specializations in the eyes of deep-sea teleosts. Journal of Fish Biology, 1996, 49, 157-174.	0.7	123
16	The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. Journal of Experimental Biology, 2001, 204, 3333-44.	0.8	122
17	The visual ecology of avian cone oil droplets. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 165, 415-426.	0.7	120
18	The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 174, 461.	0.7	117

#	Article	IF	CITATIONS
19	Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behavioral Ecology, 2002, 13, 11-19.	1.0	114
20	Ultraviolet cues affect the foraging behaviour of blue tits. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1509-1514.	1.2	113
21	Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo). Vision Research, 1999, 39, 3321-3328.	0.7	113
22	Is the ultraviolet waveband a special communication channel in avian mate choice?. Journal of Experimental Biology, 2001, 204, 2499-2507.	0.8	95
23	Dragon fish see using chlorophyll. Nature, 1998, 393, 423-424.	13.7	92
24	Using industry ROV videos to assess fish associations with subsea pipelines. Continental Shelf Research, 2017, 141, 76-97.	0.9	88
25	Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs). Science of the Total Environment, 2018, 634, 1077-1091.	3.9	86
26	The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proceedings of the Royal Society B: Biological Sciences, 1995, 262, 289-295.	1.2	85
27	Visual pigments in the individual rods of deep-sea fishes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 162, 543-550.	0.7	83
28	Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 681-694.	0.7	82
29	Is the ultraviolet waveband a special communication channel in avian mate choice?. Journal of Experimental Biology, 2001, 204, 2499-507.	0.8	80
30	Dynamic polarization vision in mantis shrimps. Nature Communications, 2016, 7, 12140.	5.8	78
31	A new template for rhodopsin (vitamin A1 based) visual pigments. Vision Research, 1991, 31, 619-630.	0.7	72
32	Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology, 2015, 28, 1309-1320.	0.8	72
33	Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Research, 1999, 39, 2817-2832.	0.7	71
34	Developmental changes in the cone visual pigments of black bream <i>Acanthopagrus butcheri</i> . Journal of Experimental Biology, 2002, 205, 3661-3667.	0.8	71
35	The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Research, 1991, 31, 361-371.	0.7	70
36	Visual pigments and optical habitats of surfperch (Embiotocidae) in the California kelp forest. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 875-889.	0.7	69

#	Article	IF	CITATIONS
37	Far-red sensitivity of dragon fish. Nature, 1995, 375, 21-22.	13.7	67
38	Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 155-163.	1.2	66
39	Retinal asymmetry in birds. Current Biology, 2000, 10, 115-117.	1.8	66
40	Visual Pigments, Ocular Filters and the Evolution of Snake Vision. Molecular Biology and Evolution, 2016, 33, 2483-2495.	3.5	65
41	Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1003-1017.	0.6	62
42	On the visual pigments of deep-sea fish. Journal of Fish Biology, 1997, 50, 68-85.	0.7	61
43	Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 869-874.	1.2	60
44	Single and multiple visual pigments in deep-sea fishes. Journal of the Marine Biological Association of the United Kingdom, 1992, 72, 113-130.	0.4	58
45	Suspension Feeding Adaptations to Extreme Flow Environments in a Marine Bryozoan. Biological Bulletin, 1999, 196, 205-215.	0.7	57
46	Seven Retinal Specializations in the Tubular Eye of the Deep-Sea Pearleye, <i>Scopelarchus michaelsarsi: </i> A Case Study in Visual Optimization. Brain, Behavior and Evolution, 1998, 51, 291-314.	0.9	55
47	A Novel Vertebrate Eye Using Both Refractive and Reflective Optics. Current Biology, 2009, 19, 108-114.	1.8	55
48	Diel shifts and habitat associations of fish assemblages on a subsea pipeline. Fisheries Research, 2018, 206, 220-234.	0.9	55
49	Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. Journal of Experimental Biology, 2002, 205, 3661-7.	0.8	54
50	Spectral absorbance changes in the violet/blue sensitive cones of the juvenile pollack,Pollachius pollachius. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 163, 699-703.	0.7	53
51	Bumblebees Learn Polarization Patterns. Current Biology, 2014, 24, 1415-1420.	1.8	53
52	Reflecting optics in the diverticular eye of a deep-sea barreleye fish (<i>Rhynchohyalus natalensis</i>) Tj ETQqO	0 0 rgBT /0 1.2	Dverlock 10 T

53	Tubular Eyes of Deep-Sea Fishes: A Comparative Study of Retinal Topography (Part 1 of 2). Brain, Behavior and Evolution, 1997, 50, 335-346.	0.9	48
54	Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Animal Behaviour, 2003, 65, 693-700.	0.8	46

JULIAN C PARTRIDGE

#	Article	IF	CITATIONS
55	Opsin substitution induced in retinal rods of the eel (Anguilla anguilla (L.)): a model for G -protein-linked receptors. Proceedings of the Royal Society B: Biological Sciences, 1993, 254, 227-232.	1.2	45
56	Adaptation of visual pigments to the aquatic environment. , 1999, , 251-283.		45
57	Does Lepidopteran Larval Crypsis Extend into the Ultraviolet?. Die Naturwissenschaften, 1998, 85, 189-192.	0.6	44
58	Fish associated with a subsea pipeline and adjacent seafloor of the North West Shelf of Western Australia. Marine Environmental Research, 2018, 141, 53-65.	1.1	43
59	Fish and habitats on wellhead infrastructure on the north west shelf of Western Australia. Continental Shelf Research, 2018, 164, 10-27.	0.9	43
60	Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans. Frontiers in Marine Science, 2020, 7, .	1.2	43
61	Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152624.	1.2	42
62	Long–wave sensitivity in deep–sea stomiid dragonfish with far–red bioluminescence: evidence for a dietary origin of the chlorophyll–derived retinal photosensitizer of Malacosteus niger. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1269-1272.	1.8	40
63	Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Diversity and Distributions, 2019, 25, 1259-1272.	1.9	40
64	Zebrafish Preference for Light or Dark Is Dependent on Ambient Light Levels and Olfactory Stimulation. Zebrafish, 2011, 8, 17-22.	0.5	38
65	Visual and lenticular pigments in the eyes of demersal deep-sea fishes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 177, 111.	0.7	37
66	Avian colour vision and avian video playback experiments. Acta Ethologica, 2000, 3, 29-37.	0.4	36
67	Bioluminescence in the deep sea: Free-fall lander observations in the Atlantic Ocean off Cape Verde. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1272-1283.	0.6	36
68	Yearâ€ r ound sexual harassment as a behavioral mediator of vertebrate population dynamics. Ecological Monographs, 2012, 82, 351-366.	2.4	36
69	Disordered animal multilayer reflectors and the localization of light. Journal of the Royal Society Interface, 2014, 11, 20140948.	1.5	36
70	Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. Marine Biology, 2018, 165, 7.	0.7	36
71	Colour vision in billfish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1253-1256.	1.8	34
72	Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus. Visual Neuroscience, 2007, 24, 345-354.	0.5	34

JULIAN C PARTRIDGE

#	Article	IF	CITATIONS
73	Enzyme Sequence and Its Relationship to Hyperbaric Stability of Artificial and Natural Fish Lactate Dehydrogenases. PLoS ONE, 2008, 3, e2042.	1.1	34
74	Rod visual pigment changes in the elver of the eel Anguilla anguilla L. measured by microspectrophotometry. Journal of Fish Biology, 1992, 41, 601-611.	0.7	31
75	The influence of depth and a subsea pipeline on fish assemblages and commercially fished species. PLoS ONE, 2018, 13, e0207703.	1.1	31
76	The evolution of scale sensilla in the transition from land to sea in elapid snakes. Open Biology, 2016, 6, 160054.	1.5	30
77	Spectral irradiance and foraging efficiency in the guppy, Poecilia reticulata. Animal Behaviour, 2005, 69, 519-527.	0.8	25
78	Shark conservation hindered by lack of habitat protection. Global Ecology and Conservation, 2020, 21, e00862.	1.0	24
79	A century later: Long-term change of an inshore temperate marine fish assemblage. Journal of Sea Research, 2011, 65, 187-194.	0.6	23
80	Light environment and mating behavior in Trinidadian guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 2009, 64, 169-182.	0.6	22
81	Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biological Journal of the Linnean Society, 2019, 126, 796-823.	0.7	22
82	Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks. PLoS ONE, 2014, 9, e104213.	1.1	22
83	Aquatic prey use countershading camouflage to match the visual background. Behavioral Ecology, 2017, 28, 1314-1322.	1.0	21
84	Future Distribution of Suitable Habitat for Pelagic Sharks in Australia Under Climate Change Models. Frontiers in Marine Science, 2020, 7, .	1.2	20
85	Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Current Biology, 2020, 30, 2608-2615.e4.	1.8	20
86	Foraging Activity of Limpets in Normal and Abnormal Tidal Regimes. Journal of the Marine Biological Association of the United Kingdom, 1991, 71, 537-554.	0.4	19
87	Vision and visual variation in the peacock blenny. Journal of Fish Biology, 2004, 65, 227-250.	0.7	19
88	Ultraviolet photopigment sensitivity and ocular media transmittance in gulls, with an evolutionary perspective. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 585-590.	0.7	19
89	Microspectrophotometric determinations of rod visual pigments in some adult and larval Australian amphibians. Visual Neuroscience, 1992, 9, 137-142.	0.5	17
90	The absorbance spectrum and photosensitivity of a new synthetic "visual pigment―based on 4-hydroxyretinal. Vision Research, 1992, 32, 3-10.	0.7	16

#	Article	IF	CITATIONS
91	Behavioural investigation of polarisation sensitivity in the Japanese quail (Coturnix coturnix) Tj ETQq1 1 0.784314 3201-3210.	rgBT /O 0.8	verlock 10 Tf 16
92	A new method for mapping spatial resolution in compound eyes suggests two visual streaks in fiddler crabs. Journal of Experimental Biology, 2020, 223, .	0.8	16
93	Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis. Biological Bulletin, 1999, 197, 348-360.	0.7	15
94	The ecology of visual pigment tuning in an Australian marsupial: the honey possum Tarsipes rostratus. Journal of Experimental Biology, 2005, 208, 1803-1815.	0.8	15
95	Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Molecular Ecology, 2019, 28, 2013-2028.	2.0	15
96	Suppression of Brewster delocalization anomalies in an alternating isotropic-birefringent random layered medium. Physical Review B, 2013, 88, .	1.1	14
97	Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, <i>Anax imperator</i> (Leach, 1815). Journal of Experimental Biology, 2015, 218, 3399-405.	0.8	14
98	The Effects of Plant Virus Infection on Polarization Reflection from Leaves. PLoS ONE, 2016, 11, e0152836.	1.1	14
99	diceCT: A Valuable Technique to Study the Nervous System of Fish. ENeuro, 2020, 7, ENEURO.0076-20.2020.	0.9	14
100	Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments. Molecular Phylogenetics and Evolution, 2016, 105, 160-165.	1.2	13
101	Illumination of trawl gear by mechanically stimulated bioluminescence. Fisheries Research, 2006, 81, 276-282.	0.9	12
102	Deep sea benthic bioluminescence at artificial food falls, 1,000–4,800Âm depth, in the Porcupine Seabight and Abyssal Plain, North East Atlantic Ocean. Marine Biology, 2007, 150, 1053-1060.	0.7	12
103	Volumetric analysis and morphological assessment of the ascending olfactory pathway in an elasmobranch and a teleost using diceCT. Brain Structure and Function, 2020, 225, 2347-2375.	1.2	12
104	Ion-Selective Membranes Involved in Pattern-Forming Processes. Journal of Physical Chemistry B, 2004, 108, 18135-18139.	1.2	11
105	Female guppies (Poecilia reticulata) show no preference for conspecific chemosensory cues in the field or an artificial flow chamber. Behaviour, 2008, 145, 1329-1346.	0.4	11
106	Photoreceptors and diurnal variation in spectral sensitivity in the fiddler crab <i>Gelasimus dampieri</i> . Journal of Experimental Biology, 2020, 223, .	0.8	11
107	Condition-dependent mate choice in the guppy: a role for short-term food restriction?. Behaviour, 2006, 143, 1317-1340.	0.4	10
108	Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger. Scientific Reports, 2016, 6, 39395.	1.6	10

#	Article	IF	CITATIONS
109	The independence of eye movements in a stomatopod crustacean is task dependent. Journal of Experimental Biology, 2017, 220, 1360-1368.	0.8	10
110	Animal Behaviour: Ultraviolet Fish Faces. Current Biology, 2010, 20, R318-R320.	1.8	9
111	Food and Conspecific Chemical Cues Modify Visual Behavior of Zebrafish, Danio rerio. Zebrafish, 2012, 9, 68-73.	0.5	9
112	Convergence of Olfactory Inputs within the Central Nervous System of a Cartilaginous and a Bony Fish: An Anatomical Indicator of Olfactory Sensitivity. Brain, Behavior and Evolution, 2020, 95, 139-161.	0.9	9
113	Complex gaze stabilization in mantis shrimp. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180594.	1.2	8
114	Observations on the retina and â€~optical fold' of a mesopelagic sabretooth fish, Evermanella balbo. Cell and Tissue Research, 2019, 378, 411-425.	1.5	7
115	The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments. Journal of Experimental Biology, 2006, 209, 314-319.	0.8	6
116	Sensory Ecology: Giant Eyes for Giant Predators?. Current Biology, 2012, 22, R268-R270.	1.8	6
117	The Value of Subsea Pipelines to Marine Biodiversity. , 2018, , .		6
118	Mystery pufferfish create elaborate circular nests at mesophotic depths in Australia. Journal of Fish Biology, 2020, 97, 1401-1407.	0.7	5
119	Behavioural and pathomorphological impacts of flash photography on benthic fishes. Scientific Reports, 2019, 9, 748.	1.6	4
120	Multimodal Imaging and Analysis of the Neuroanatomical Organization of the Primary Olfactory Inputs in the Brownbanded Bamboo Shark, Chiloscyllium punctatum. Frontiers in Neuroanatomy, 2020, 14, 560534.	0.9	4
121	From matte banded to glossy black: structures underlying colour change in the caudal lures of southern death adders (<i>Acanthophis antarcticus,</i> Reptilia: Elapidae). Biological Journal of the Linnean Society, 2021, 132, 666-675.	0.7	4
122	Comparing the Utility of Industry ROV and Hybrid-AUV Imagery for Surveys of Fish Along a Subsea Pipeline. Marine Technology Society Journal, 2020, 54, 33-42.	0.3	4
123	Quantifying fishing activity targeting subsea pipelines by commercial trap fishers. Reviews in Fish Biology and Fisheries, 2021, 31, 1009-1023.	2.4	4
124	Spectral sensitivity in the guppy (<i>poecilia reticulata</i>) measured using the dorsal light response. Marine and Freshwater Behaviour and Physiology, 1996, 28, 163-176.	0.4	3
125	Gaze stabilization in mantis shrimp in response to angled stimuli. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 515-527.	0.7	3
126	Baited remote underwater video sample less site attached fish species along a subsea pipeline compared to a remotely operated vehicle. Marine and Freshwater Research, 2022, , .	0.7	2

#	Article	IF	Citations
127	Catecholamine-induced colour changes in the corneal iridophores of the sand goby, Pomatoschistus minutus. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1989, 94, 351-355.	0.2	1
128	Light and life on RRS â€~Discovery'. Journal of the Marine Biological Association of the United Kingdom, 1992, 72, 1-4.	0.4	1
129	An omnidirectional broadband mirror design inspired by biological multilayer reflectors. , 2012, , .		1
130	On the visual pigments of deep-sea fish. Journal of Fish Biology, 1997, 50, 68-85.	0.7	1
131	The effects of surface structure mutations in Arabidopsis thaliana on the polarization of reflections from virus-infected leaves. PLoS ONE, 2017, 12, e0174014.	1.1	1