Zhanyang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8994448/publications.pdf

Version: 2024-02-01

		279487	315357
48	1,549	23	38
papers	citations	h-index	g-index
50	50	50	1918
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Endothelial Regulation by Exogenous Annexin A1 in Inflammatory Response and BBB Integrity Following Traumatic Brain Injury. Frontiers in Neuroscience, 2021, 15, 627110.	1.4	8
2	Recombinant Annexin A2 Administration Improves Neurological Outcomes After Traumatic Brain Injury in Mice. Frontiers in Pharmacology, 2021, 12, 708469.	1.6	6
3	Different Responses to Identical Trauma Between BALB/C and C57BL/6 Mice. Medical Science Monitor, 2021, 27, e928676.	0.5	O
4	EphrinB2-EphB2 signaling for dendrite protection after neuronal ischemia in vivo and oxygen-glucose deprivation in vitro. Journal of Cerebral Blood Flow and Metabolism, 2020, 41, 0271678X2097311.	2.4	2
5	A Preliminary Study of Cu Exposure Effects upon Alzheimer's Amyloid Pathology. Biomolecules, 2020, 10, 408.	1.8	5
6	FGF21 Protects against Aggravated Blood-Brain Barrier Disruption after Ischemic Focal Stroke in Diabetic db/db Male Mice via Cerebrovascular PPARγ Activation. International Journal of Molecular Sciences, 2020, 21, 824.	1.8	36
7	Annexin A2 is a Robo4 ligand that modulates ARF6 activation-associated cerebral trans-endothelial permeability. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2048-2060.	2.4	26
8	Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice. Molecular Neurobiology, 2019, 56, 2314-2327.	1.9	38
9	HDAC3 inhibition prevents blood-brain barrier permeability through Nrf2 activation in type 2 diabetes male mice. Journal of Neuroinflammation, 2019, 16, 103.	3.1	50
10	Annexin A2 Deficiency Exacerbates Neuroinflammation and Long-Term Neurological Deficits after Traumatic Brain Injury in Mice. International Journal of Molecular Sciences, 2019, 20, 6125.	1.8	23
11	<scp>HDAC</scp> 3 inhibition prevents oxygen glucose deprivation/reoxygenationâ€induced transendothelial permeability by elevating <scp>PPAR</scp> γ activity <i>inÂvitro</i> . Journal of Neurochemistry, 2019, 149, 298-310.	2.1	20
12	bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms. Molecular Neurobiology, 2018, 55, 3131-3142.	1.9	28
13	FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Molecular Neurobiology, 2018, 55, 4702-4717.	1.9	109
14	Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke, 2018, 49, 3039-3049.	1.0	36
15	Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death and Disease, 2018, 9, 945.	2.7	37
16	Amyloid-β25–35 Upregulates Endogenous Neuroprotectant Neuroglobin via NFκB Activation in vitro. Journal of Alzheimer's Disease, 2018, 64, 1163-1174.	1.2	16
17	Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats. Translational Stroke Research, 2017, 8, 549-559.	2.3	23
18	CD47 deficiency improves neurological outcomes of traumatic brain injury in mice. Neuroscience Letters, 2017, 643, 125-130.	1.0	18

#	Article	IF	Citations
19	Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. International Journal of Medical Sciences, 2017, 14, 927-936.	1.1	22
20	Intraventricular apolipoprotein ApoJ infusion acts protectively in Traumatic Brain Injury. Journal of Neurochemistry, 2016, 136, 1017-1025.	2.1	26
21	TNFAIP1 contributes to the neurotoxicity induced by Aβ25–35 in Neuro2a cells. BMC Neuroscience, 2016, 17, 51.	0.8	22
22	Roles of Neuroglobin Binding to Mitochondrial Complex III Subunit Cytochrome c1 in Oxygen-Glucose Deprivation-Induced Neurotoxicity in Primary Neurons. Molecular Neurobiology, 2016, 53, 3249-3257.	1.9	34
23	Establishment of Cell-Based Neuroglobin Promoter Reporter Assay for Neuroprotective Compounds Screening. CNS and Neurological Disorders - Drug Targets, 2016, 15, 629-639.	0.8	21
24	Combination Low-Dose Tissue-Type Plasminogen Activator Plus Annexin A2 for Improving Thrombolytic Stroke Therapy. Frontiers in Cellular Neuroscience, 2015, 9, 397.	1.8	10
25	Low dose tPA plus annexin A2 combination attenuates tPA delayed treatment- associated hemorrhage and improves recovery in rat embolic focal stroke. Neuroscience Letters, 2015, 602, 73-78.	1.0	10
26	Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro. Metabolic Brain Disease, 2015, 30, 829-837.	1.4	13
27	Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metabolic Brain Disease, 2015, 30, 491-496.	1.4	22
28	Effects of Tissue Plasminogen Activator and Annexin A2 Combination Therapy on Long-Term Neurological Outcomes of Rat Focal Embolic Stroke. Stroke, 2014, 45, 619-622.	1.0	29
29	Combination Approaches to Attenuate Hemorrhagic Transformation After tPA Thrombolytic Therapy in Patients with Poststroke Hyperglycemia/Diabetes. Advances in Pharmacology, 2014, 71, 391-410.	1.2	21
30	Transcriptional regulation of mouse neuroglobin gene by cyclic AMP responsive element binding protein (CREB) in N2a cells. Neuroscience Letters, 2013, 534, 333-337.	1.0	23
31	Neuroglobin overexpression inhibits oxygen–glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons. Neurobiology of Disease, 2013, 56, 95-103.	2.1	70
32	Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thrombosis and Haemostasis, 2013, 109, 1070-1078.	1.8	19
33	Mitochondrial Mechanisms of Neuroglobin's Neuroprotection. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	1.9	43
34	Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression. Biochemical Journal, 2012, 443, 153-164.	1.7	41
35	A Rat Model of Studying Tissue-Type Plasminogen Activator Thrombolysis in Ischemic Stroke With Diabetes. Stroke, 2012, 43, 567-570.	1.0	64
36	Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen. Fungal Genetics and Biology, 2012, 49, 21-29.	0.9	4

#	Article	IF	CITATION
37	Neuroglobin-overexpression reduces traumatic brain lesion size in mice. BMC Neuroscience, 2012, 13, 67.	0.8	32
38	Neuroglobin, a Novel Target for Endogenous Neuroprotection against Stroke and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2012, 13, 6995-7014.	1.8	64
39	Neuroglobin: A Novel Target for Endogenous Neuroprotection. , 2012, , 353-372.		1
40	Neuroglobin Is an Endogenous Neuroprotectant for Retinal Ganglion Cells against Glaucomatous Damage. American Journal of Pathology, 2011, 179, 2788-2797.	1.9	47
41	Visualization of Clot Lysis in a Rat Embolic Stroke Model. Stroke, 2011, 42, 1110-1115.	1.0	21
42	Annexin A2 Combined with Low-Dose tPA Improves Thrombolytic Therapy in a Rat Model of Focal Embolic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1137-1146.	2.4	75
43	Increased Nuclear Apoptosis-Inducing Factor after Transient Focal Ischemia: A 12/15-Lipoxygenase-dependent Organelle Damage Pathway. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1157-1167.	2.4	67
44	Annexin A2. Stroke, 2010, 41, S54-8.	1.0	27
45	<i>Ustilago maydis</i> Rho1 and 14-3-3 Homologues Participate in Pathways Controlling Cell Separation and Cell Polarity. Eukaryotic Cell, 2009, 8, 977-989.	3.4	31
46	Neuroprotective roles and mechanisms of neuroglobin. Neurological Research, 2009, 31, 122-127.	0.6	47
47	Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. Journal of Neuroscience Research, 2009, 87, 164-170.	1.3	114
48	An ste20 Homologue in Ustilago maydis Plays a Role in Mating and Pathogenicity. Eukaryotic Cell, 2004, 3, 180-189.	3.4	46