Mir Asif Iquebal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8994345/publications.pdf

Version: 2024-02-01

			623188	580395
ı	88	1,013	14	25
	papers	citations	h-index	g-index
	92	92	92	1215
	92	92	92	1213
	all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS. Frontiers in Plant Science, 2019, 10, 527.	1.7	70
2	RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Scientific Reports, 2019, 9, 13917.	1.6	60
3	Characterization of genetic diversity and population structure in wheat using array based SNP markers. Molecular Biology Reports, 2020, 47, 293-306.	1.0	60
4			

#	Article	IF	CITATIONS
19	The genome of walking catfish $\langle i \rangle$ Clarias magur $\langle i \rangle$ (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes. DNA Research, 2021, 28, .	1.5	16
20	Transcriptomic signature reveals mechanism of flower bud distortion in witches'-broom disease of soybean (Glycine max). BMC Plant Biology, 2019, 19, 26.	1.6	15
21	PolyMorphPredict: A Universal Web-Tool for Rapid Polymorphic Microsatellite Marker Discovery From Whole Genome and Transcriptome Data. Frontiers in Plant Science, 2018, 9, 1966.	1.7	15
22	Transcriptome analysis of Snow Mountain Garlic for unraveling the organosulfur metabolic pathway. Genomics, 2020, 112, 99-107.	1.3	15
23	PIPEMicroDB: microsatellite database and primer generation tool for pigeonpea genome. Database: the Journal of Biological Databases and Curation, 2013, 2013, bas054.	1.4	14
24	The role of conserved residues in the catalytic activity of NDM-1: an approach involving site directed mutagenesis and molecular dynamics. Physical Chemistry Chemical Physics, 2019, 21, 17821-17835.	1.3	14
25	Seasonal parasitism and biological characteristics of <i>Habrobracon hebetor</i> (Hymenoptera:) Tj ETQq1	l 0.784314 rgE 0.5	BT /Overlock 13
26	Locus minimization in breed prediction using artificial neural network approach. Animal Genetics, 2014, 45, 898-902.	0.6	13
27	Recycling of Organic Waste through Four Different Composts for Disease Suppression and Growth Enhancement in Mung Beans. Clean - Soil, Air, Water, 2015, 43, 1066-1071.	0.7	13
28	Selection of pigeonpea genotypes for tolerance to aluminium toxicity. Plant Breeding, 2011, 130, 492-495.	1.0	12
29	Evidence of salicylic acid pathway with EDS1 and PAD4 proteins by molecular dynamics simulation for grape improvement. Journal of Biomolecular Structure and Dynamics, 2015, 33, 2180-2191.	2.0	12
30	Deciphering genes associated with root wilt disease of coconut and development of its transcriptomic database (CnTDB). Physiological and Molecular Plant Pathology, 2017, 100, 255-263.	1.3	12
31	Muscle transcriptome signature and gene regulatory network analysis in two divergent lines of a hilly bovine species Mithun (Bos frontalis). Genomics, 2020, 112, 252-262.	1.3	12
32	Groundnut Bud Necrosis Virus Modulates the Expression of Innate Immune, Endocytosis, and Cuticle Development-Associated Genes to Circulate and Propagate in Its Vector, Thrips palmi. Frontiers in Microbiology, 2022, 13, 773238.	1.5	12
33	Draft Genome Sequence of Two Monosporidial Lines of the Karnal Bunt Fungus <i>Tilletia indica</i> Mitra (PSWKBGH-1 and PSWKBGH-2). Genome Announcements, 2016, 4, .	0.8	11
34	Development of transcriptome based web genomic resources of yellow mosaic disease in Vigna mungo. Physiology and Molecular Biology of Plants, 2017, 23, 767-777.	1.4	11
35	Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822). Genomics, 2020, 112, 32-44.	1.3	11
36	Assembly and variation analyses of Clarias batrachus mitogenome retrieved from WGS data and its phylogenetic relationship with other catfishes. Meta Gene, 2015, 5, 105-114.	0.3	9

#	Article	IF	Citations
37	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	9
38	Comparative transcriptome profiling reveals the basis of differential sheath blight disease response in tolerant and susceptible rice genotypes. Protoplasma, 2022, 259, 61-73.	1.0	9
39	Genome Wide Prediction, Mapping and Development of Genomic Resources of Mastitis Associated Genes in Water Buffalo. Frontiers in Veterinary Science, 2021, 8, 593871.	0.9	8
40	Bootstrap study of parameter estimates for nonlinear Richards growth model through genetic algorithm. Journal of Applied Statistics, 2011, 38, 491-500.	0.6	7
41	SBMDb: first whole genome putative microsatellite DNA marker database of sugarbeet for bioenergy and industrial applications. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav111.	1.4	7
42	The Onion Genomic Resource: A genomics and bioinformatics driven resource for onion breeding. Plant Gene, 2016, 8, 9-15.	1.4	7
43	Development of species specific putative miRNA and its target prediction tool in wheat (Triticum) Tj ETQq $1\ 1\ 0.7$	'84314 rgl 1.6	BT /Overlock
44	Drought responsiveness in black pepper (<scp><i>Piper nigrum</i></scp> L.): Genes associated and development of a webâ€genomic resource. Physiologia Plantarum, 2021, 172, 669-683.	2.6	7
45	Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics, 2022, 114, 110273.	1.3	7
46	Agro-morphological and molecular diversity in different maturity groups of Indian cauliflower (Brassica oleraceaÂvar. botrytis L.). PLoS ONE, 2021, 16, e0260246.	1.1	7
47	RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. Frontiers in Plant Science, 2022, 13, .	1.7	7
48	Development of a model webserver for breed identification using microsatellite DNA marker. BMC Genetics, 2013, 14, 118.	2.7	6
49	Applications of Bioinformatics in Plant and Agriculture. , 2015, , 755-789.		6
50	A meta-analysis of potential candidate genes associated with salinity stress tolerance in rice. Agri Gene, 2016, 1, 126-134.	1.9	6
51	Revealing Alteration in the Hepatic Glucose Metabolism of Genetically Improved Carp, Jayanti Rohu Labeo rohita Fed a High Carbohydrate Diet Using Transcriptome Sequencing. International Journal of Molecular Sciences, 2020, 21, 8180.	1.8	6
52	De novo transcriptome sequencing assisted identification of terpene synthases from black pepper (Piper nigrum) berry. Physiology and Molecular Biology of Plants, 2021, 27, 1153-1161.	1.4	6
53	Computational deciphering of biotic stress associated genes in tomato (Solanum lycopersicum). Genomics Data, 2017, 14, 82-90.	1.3	5
54	BanSatDB, a whole-genome-based database of putative and experimentally validated microsatellite markers of three Musa species. Crop Journal, 2018, 6, 642-650.	2.3	5

#	Article	IF	CITATIONS
55	Plant virus interaction mechanism and associated pathways in mosaic disease of small cardamom (Elettaria cardamomum Maton) by RNA-Seq approach. Genomics, 2020, 112, 2041-2051.	1.3	5
56	SNPs in Mammary Gland Epithelial Cells Unraveling Potential Difference in Milk Production Between Jersey and Kashmiri Cattle Using RNA Sequencing. Frontiers in Genetics, 2021, 12, 666015.	1.1	5
57	An insight into molecular interaction of PGIP with PG for banana cultivar. Frontiers in Bioscience - Landmark, 2020, 25, 335-362.	3.0	5
58	Microbiome of Pukzing Cave in India shows high antimicrobial activity against plant and animal pathogens. Genomics, 2021, 113, 4098-4108.	1.3	5
59	Centenary of Soil and Air Borne Wheat Karnal Bunt Disease Research: A Review. Biology, 2021, 10, 1152.	1.3	5
60	GWAS to Identify Novel QTNs for WSCs Accumulation in Wheat Peduncle Under Different Water Regimes. Frontiers in Plant Science, 2022, 13, 825687.	1.7	5
61	Genome-Wide DNA Methylation and Its Effect on Gene Expression During Subclinical Mastitis in Water Buffalo. Frontiers in Genetics, 2022, 13, 828292.	1.1	5
62	Whole-Genome Sequence Resource of Indian Race 4 of <i>Xanthomonas campestris</i> pv. <i>campestris</i> , the Causal Agent of Black Rot Disease of <i>Brassica oleracea</i> var. <i>capitata</i> . Plant Disease, 2022, 106, 1502-1505.	0.7	5
63	Transcriptomic Changes of Bemisia tabaci Asia II 1 Induced by Chilli Leaf Curl Virus Trigger Infection and Circulation in Its Vector. Frontiers in Microbiology, 2022, 13, 890807.	1.5	5
64	Genetic diversity analysis for quantitative traits in lentil (Lens culinarismedik.) germplasm. Legume Research, 2014, 37, 139.	0.0	4
65	Species specific approach to the development of web-based antimicrobial peptides prediction tool for cattle. Computers and Electronics in Agriculture, 2015, 111, 55-61.	3.7	4
66	Transcriptomic signature of Fusarium toxin in chickpea unveiling wilt pathogenicity pathways and marker discovery. Physiological and Molecular Plant Pathology, 2017, 100, 163-177.	1.3	4
67	Liver-Specific microRNA Identification in Farmed Carp, Labeo bata (Hamilton, 1822), Fed with Starch Diet Using High-Throughput Sequencing. Marine Biotechnology, 2019, 21, 589-595.	1.1	4
68	Fungal Genomic Resources for Strain Identification and Diversity Analysis of 1900 Fungal Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 288.	1.5	4
69	Whole-Genome-Based Web Genomic Resource for Water Buffalo (Bubalus bubalis). Frontiers in Genetics, 2022, 13, 809741.	1.1	4
70	Revelation of candidate genes and molecular mechanism of reproductive seasonality in female rohu (Labeo rohita Ham.) by RNA sequencing. BMC Genomics, 2021, 22, 685.	1.2	3
71	Prediction of MHC Binding Peptides and Epitopes from Coat Protein of Mungbean Yellow Mosaic India Virus-Ub05. Journal of Proteomics and Bioinformatics, 2010, 03, 173-178.	0.4	3
72	Assessment of Groundwater Recharge in a Small Ravine Watershed in Semi-arid Region of India. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2552-2565.	0.0	3

#	Article	IF	CITATIONS
73	Low-depth shotgun sequencing resolves complete mitochondrial genome sequence of <i>Labeo rohita</i> . Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3517-3518.	0.7	2
74	Genomic analysis of polycarpellary rice (Oryza sativa L.) through whole genome resequencing. Journal of Plant Biochemistry and Biotechnology, 2020, 30, 364.	0.9	2
75	In silico assisted identification of peppery aroma compound â€rotundone' backbone genes from black pepper. Journal of Biomolecular Structure and Dynamics, 2021, , 1-7.	2.0	2
76	Establishment of Repertoire of Placentome-Associated MicroRNAs and Their Appearance in Blood Plasma Could Identify Early Establishment of Pregnancy in Buffalo (Bubalus bubalis). Frontiers in Cell and Developmental Biology, 2021, 9, 673765.	1.8	2
77	Understanding population structure and detection of QTLs for curding-related traits in Indian cauliflower by genotyping by sequencing analysis. Functional and Integrative Genomics, 2021, 21, 679-693.	1.4	2
78	Rapid Genome-Wide Location-Specific Polymorphic SSR Marker Discovery in Black Pepper by GBS Approach. Frontiers in Plant Science, 2022, 13, .	1.7	2
79	A Bootstrap Study of Variance Estimation under Heteroscedasticity Using Genetic Algorithm. Journal of Statistical Theory and Practice, 2008, 2, 55-69.	0.3	1
80	Analysis and Functional Annotation of Expressed Sequence Tags of Water Buffalo. Animal Biotechnology, 2013, 24, 25-30.	0.7	1
81	Designing and validating e-learning module on Good Agricultural Practices for grapes. Indian Journal of Horticulture, 2015, 72, 489.	0.1	1
82	Development of Smart Weighing Lysimeter for Measuring Evapotranspiration and Developing Crop Coefficient for Greenhouse Chrysanthemum. SSRN Electronic Journal, 0, , .	0.4	1
83	In Silico Prediction and Functional Characterization of Genes Related to Abiotic and Biotic Stresses in Chickpea (Cicer arietinum). Current Research in Bioinformatics, 2018, 7, 1-35.	0.0	0
84	Genome-Wide Analysis of HSP70 Family Protein in Vigna radiata and Coexpression Analysis Under Abiotic and Biotic Stress. Journal of Computational Biology, 2020, 27, 738-754.	0.8	0
85	Intra-varietal stability performance of popular rice landrace  C14-8' in the Andaman Islands. Cereal Research Communications, 2020, 48, 103-111.	0.8	0
86	Mango Genomic Resources and Databases. Compendium of Plant Genomes, 2021, , 219-228.	0.3	0
87	Determination of MHC Binding Peptides and Epitopes from Non-Structural Movement (NSm) Protein of Groundnut Bud Necrosis Virus. Current Drug Discovery Technologies, 2010, 7, 117-122.	0.6	0
88	Introduction to Technology Forecasting and Assessment methods. Bhartiya Krishi Anusandhan Patrika, 2019, 34, .	0.0	0