Ching-Fuh Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8994161/publications.pdf

Version: 2024-02-01

314 3,357 28 50
papers citations h-index g-index

316 316 316 3612 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An Alternative to Compound Semiconductors Using a Si-Based IR Detector. IEEE Transactions on Electron Devices, 2022, 69, 205-211.	3.0	4
2	Surface-Plasmon-Resonance Based Narrow-Bandwidth Infrared Carbon Monoxide Detection System. IEEE Sensors Journal, 2022, 22, 9803-9810.	4.7	3
3	Enhanced Efficiency of Semitransparent Perovskite Solar Cells via Double-Sided Sandwich Evaporation Technique for Four Terminal Perovskite-Silicon Tandem Application. Nanomaterials, 2022, 12, 1569.	4.1	6
4	Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal. Nanomaterials, 2022, 12, 1750.	4.1	5
5	Low photoactive phase temperature all-inorganic, tin–lead mixed perovskite solar cell. RSC Advances, 2021, 11, 3264-3271.	3.6	6
6	Silicon-Based Photodetector for Infrared Telecommunication Applications. IEEE Photonics Journal, 2021, 13, 1-7.	2.0	12
7	Anti-Solvent Vapor-Assisted Crystallization Control on High Performance Perovskite Solar Cell via Sandwich Evaporation Technique. , 2021, , .		O
8	Sandwich Evaporation–Solvent Annealing Fabrication of Highly Crystalline MAPblxCl3–x Perovskite Solar Cells. ACS Applied Materials & Solar Cells.	8.0	5
9	The relationship between basic group resonance and quantum yield of high efficiency red light fluorescent solutions. RSC Advances, 2021, 11, 39142-39146.	3.6	4
10	Growth process control produces high-crystallinity and complete-reaction perovskite solar cells. RSC Advances, 2020, 10, 35898-35905.	3.6	4
11	Solar Power Can Substantially Prolong Maximum Achievable Airtime of Quadcopter Drones. Advanced Science, 2020, 7, 2001497.	11.2	5
12	Combining solution process and thermal evaporation to improve the crystallinity and fabircate high-quality perovskite solar cell. , 2020, , .		0
13	Application of Silicon Nanostructure Arrays for 6-inch Mono and Multi-Crystalline Solar Cell. Nanoscale Research Letters, 2019, 14, 212.	5.7	4
14	Enhancing the Performance of Textured Silicon Solar Cells by Combining Up-Conversion with Plasmonic Scattering. Energies, 2019, 12, 4119.	3.1	2
15	Enhancing Si/Organic Hybrid Solar Cells via Optimizing PEDOT:PSS Optical Properties and Anode Surface Contacts. IEEE Journal of Photovoltaics, 2019, 9, 688-693.	2.5	9
16	High efficiency perovskite solar cell for industrialization via sandwich evaporation. , 2019, , .		0
17	Ultra-broadband photoresponse of localized surface plasmon resonance from Si-based pyramid structures. Photonics Research, 2019, 7, 1119.	7.0	23
18	The Deposition Environment Controlling Method: A Vapor-Phase Solvent-Assisted Approach to Fabricate High-Quality Crystalline Perovskite. IEEE Journal of Photovoltaics, 2018, , 1-6.	2.5	1

#	Article	IF	CITATIONS
19	Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors. Materials, 2018, 11, 845.	2.9	7
20	Formation of Crystalline Si Optical Waveguides on Bulk (100) Si Substrate as a New Platform for On-Chip Interconnect Applications. Journal of Lightwave Technology, 2017, 35, 2266-2272.	4.6	4
21	Light trapping of plasmonics textured silicon solar cells based on broadband light scattering and wide acceptance angle of indium nanoparticles. , 2017, , .		O
22	Efficient Planar Heterojunction Perovskite Solar Cells via Low-Pressure Proximity Evaporation Technique. IEEE Journal of Photovoltaics, 2017, 7, 184-190.	2.5	7
23	Toward High Performance Organic-Silicon Hybrid Solar Cells. , 2017, , .		0
24	Enhancing the Crystalline of Planar-Structure CH3NH3PbI3 Perovskite Solar Cells via Sandwich Evaporation Technique. , 2017, , .		0
25	Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence. Materials, 2017, 10, 737.	2.9	7
26	Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage. Materials, 2016, 9, 682.	2.9	4
27	Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model. Journal of Applied Physics, 2016, 120, .	2.5	15
28	The application of interface selection and passivation to high efficiency PEDOT:PSS/Si hybrid solar cells. , 2016 , , .		0
29	High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process. , 2016, , .		0
30	Efficient warm-white lighting using rare-earth-element-free fluorescent materials for saving energy, environment protection and human health. RSC Advances, 2016, 6, 111959-111965.	3.6	1
31	Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells. RSC Advances, 2016, 6, 12374-12381.	3.6	21
32	Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells. Nanoscale, 2016, 8, 5379-5385.	5.6	23
33	Low-Pressure-Assisted Coating Method To Improve Interface between PEDOT:PSS and Silicon Nanotips for High-Efficiency Organic/Inorganic Hybrid Solar Cells via Solution Process. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2406-2415.	8.0	42
34	Modified Silicon nanotips with improved carrier lifetime by using solution process for efficient solar cells applications. , 2015 , , .		0
35	Thorough organic/Si nanostructure heterojunction provided by surfactant assisted PEDOT:PSS., 2015,		0
36	Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles. Materials, 2015, 8, 6668-6676.	2.9	16

3

#	Article	IF	CITATIONS
37	EQE response and photovoltaic performance of plasmonic silicon solar cells based on depositing with aluminum, indium, and silver nanoparticles. , 2015 , , .		O
38	Low temperature two-step solution process for perovskite solar cells with planar structure. , 2015, , .		0
39	Post-annealing effects on pulsed laser deposition-grown GaN thin films. Thin Solid Films, 2015, 577, 17-25.	1.8	11
40	Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells. RSC Advances, 2015, 5, 13224-13233.	3.6	30
41	Fabrication of silicon nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-graphene oxide hybrid solar cells. Journal of Applied Physics, 2015, 117, .	2.5	13
42	Environmentally Benign Technology for Efficient Warm-White Light Emission. Scientific Reports, 2015, 4, 5307.	3.3	22
43	Investigation of the localized surface plasmon effect from Au nanoparticles in ZnO nanorods for enhancing the performance of polymer solar cells. Nanoscale, 2015, 7, 776-783.	5.6	23
44	Enhancing performance of inverted polymer solar cells using two-growth ZnO nanorods. Solar Energy Materials and Solar Cells, 2015, 132, 570-577.	6.2	18
45	ZnS:Mn/PF nanoparticles: A novel white-light-emitting phosphor material. , 2014, , .		O
46	High conformity sidewall ZnO nanorods via hydrothermal method. , 2014, , .		0
47	Fabrication of Silicon thin film by metal-assisted chemical etching. , 2014, , .		O
48	Enhance carrier transport and efficiency by twice-growth ZnO nanorods in inverted polymer solar cells. , 2014, , .		0
49	High efficiency hybrid organic/silicon-nanohole heterojunction solar cells. , 2014, , .		0
50	Novel fabrication of Si thin film for solar cell applications. , 2014, , .		0
51	Forming extremely smooth ZnO thin film on silicon substrates for growth of large and well-aligned ZnO rods with the hydrothermal method. Journal of Sol-Gel Science and Technology, 2014, 70, 81-89.	2.4	3
52	ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells. Nanoscale, 2014, 6, 466-471.	5.6	14
53	Silicon nanowire/organic hybrid solar cells with zonyl fluorosurfactanct treated PEDOT:PSS. , 2014, , .		1
54	Hybrid organic–inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface. Nanoscale, 2014, 6, 3361.	5.6	79

#	Article	IF	CITATIONS
55	Fabrication of silicon-core waveguide on bulk Si substrate with mold-assisted method and KrF Excimer laser reformation. , $2014, \ldots$		0
56	Performance enhancement of thin-film silicon solar cells with nanoporous surface structure and TiO2 passivation layer based on optimal light trapping and surface recombination reducing. , 2014, , .		0
57	Current-Matched Improvement of Triple-Junction GaAs-Based Solar Cells Using Periodic Patterns Incorporated with Indium Nanoparticle Plasmonics. Nanoscience and Nanotechnology Letters, 2014, 6, 153-158.	0.4	1
58	Review on Recent Progress on Sandwich‧tructure Hybrid Solar Cells. Energy Technology, 2013, 1, 382-391.	3.8	1
59	Morphologic improvement of the PBDTTT-C and PC ₇₁ BM blend film with mixed solvent for high-performance inverted polymer solar cells. Nanotechnology, 2013, 24, 484009.	2.6	20
60	Significance of the ZnO nanorod array morphology for low-bandgap polymer solar cells in inverted structures. Journal of Materials Chemistry A, 2013, 1 , 14641.	10.3	14
61	The effects of MoO3 treatment on inverted PBDTTT-C:PC71BM solar cells. Solar Energy Materials and Solar Cells, 2013, 119, 235-240.	6.2	14
62	Poly(3-hexylthiophene):indene-C60 bisadduct morphology improvement by the use of polyvinylcarbazole as additive. Solar Energy Materials and Solar Cells, 2013, 113, 90-95.	6.2	10
63	Performance enhancement in inverted polymer photovoltaics with solution-processed MoO and air-plasma treatment for anode modification. Solar Energy Materials and Solar Cells, 2013, 109, 178-184.	6.2	28
64	Fabrication of large-scaled synergetic silicon nanowire arrays using metal-assisted chemical etching for solar cell applications. , $2013, , .$		1
65	Influences of silicon nanowire morphology on its electroâ€optical properties and applications for hybrid solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 1400-1410.	8.1	27
66	Morphology dependence of silicon nanostructure/organic polymer solar cell. , 2013, , .		1
67	Fabrication of Crystalline Si Waveguides on (1 0 0) Bulk Si Substrate Using Laser Reformation Method. Journal of Lightwave Technology, 2013, 31, 3368-3373.	4.6	7
68	Fabrication of gallium nitride on sapphire via pulsed laser deposition under different pressure energy. , 2013, , .		0
69	Influence of mixed solvent on the morphology of the P3HT:Indene-C60 bisadduct (ICBA) blend film and the performance of inverted polymer solar cells. Organic Electronics, 2013, 14, 26-31.	2.6	17
70	Current matched improving of triple-junctions GaAs-Based solar cell using periodic patterns incorporated with indium nanoparticle plasmonics. , 2013 , , .		0
71	Single-layer organic–inorganic-hybrid thin-film encapsulation for organic solar cells. Journal Physics D: Applied Physics, 2013, 46, 435502.	2.8	16
72	Improving performance of carrier extraction by using ZnO nanorod array in PBDTTT-C-T: PC71BM polymer photovoltaics with inverted structure. , 2013, , .		0

#	Article	IF	Citations
73	Controlling the morphology of ZnO nanorod arrays by tuning zinc nitrate/hexamethylene tetramine solution to enhance the power conversion efficiency of inverted polymer solar cell., 2013,,.		О
74	GaN thin films via pulsed laser deposition with ZnO buffer layer by hydrothermal method. , 2013, , .		0
75	Performance improvement of triple-junctions GaAs-based solar cell using SiO $< \inf > 2 < \inf > -\inf > 1$. Graded-index anti-reflection coating. , 2013, , .		0
76	Inverted organic solar cell of high current density and efficiency with ZnO nanorods. , 2013, , .		0
77	Morphologic improvement of the P3HT: Indene-C60 bis-adduct(ICBA) blend film with mixed solvent in inverted polymer solar cells. , 2012, , .		O
78	Enhancing morphology and charge extraction of low-bandgap bulk-hetrojunction on zno nanorod by ultrasonic treated hydrothermal growth. , 2012, , .		0
79	Using chemical solution process to fabricate zinc oxide micro/nano-structure on GaN with different growth time. , 2012, , .		0
80	Highly ordered silicon nanowire arrays on heterojunction solar cells. , 2012, , .		0
81	Effects of silicon nanowire morphology on optical properties and hybrid solar cell performance., 2012,,.		O
82	GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer. Solar Energy Materials and Solar Cells, 2012, 105, 40-45.	6.2	37
83	Layer transfer of crystalline Si thin film by metal-assisted chemical etching concerning different H <inf>2</inf> O <inf>2</inf> /HF ratios., 2012,,.		3
84	Photovoltaic performances enhanced by novel indium nanoparticles using surface plasmonic in GaAs-based 3-junction solar cells. , 2012 , , .		0
85	Band structure engineering for low band gap polymers containing thienopyrazine. Journal of Materials Chemistry, 2012, 22, 7331.	6.7	14
86	Fabrication of Cu <inf>2</inf> ZnSnS <inf>4</inf> thin film by sulfurization of stacked solution-based precursors with different copper sources. , 2012, , .		0
87	Si micro- and nano-structures for communication and energy applications. Proceedings of SPIE, 2012, ,	0.8	O
88	Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%. Solar Energy Materials and Solar Cells, 2012, 98, 267-272.	6.2	121
89	Interface modification of a highly air-stable polymer solar cell. Solar Energy Materials and Solar Cells, 2012, 98, 351-356.	6.2	40
90	Improvement of surface morphology of thin films and performance by applying electric field on P3HT:PCBM based solar cells. Solar Energy Materials and Solar Cells, 2012, 99, 263-267.	6.2	30

#	Article	IF	Citations
91	The influence of wrinkled ZnO on inverted low bandgap thin film solar cells. Solar Energy Materials and Solar Cells, 2012, 101, 180-185.	6.2	14
92	Morphological modification induced by external electric field during solution process of organic solar cells. Organic Electronics, 2012, 13, 297-301.	2.6	21
93	Hydrothermal synthesis of TiO <inf>2</inf> nanorod arrays on transparent conducting substrates., 2011,,.		0
94	Improve the thin film morphology and efficiency performance of P3HT:PCBM based solar cells by applying external electric fields. , 2011 , , .		1
95	Stability promotion of the inverted polymer solar cells with mixed metal oxide modification. , 2011, , .		0
96	Morphological evolution of organic solar cells induced by external electric field., 2011,,.		0
97	Controlled formation of well-aligned GaAs nanowires with high aspect ratio on transparent substrates., 2011,,.		0
98	Fabrication of multiple Si nanohole thin films from bulk wafer by controlling metal-assisted etching direction. , $2011, $, .		2
99	GaAs nanowire/PEDOT:PSS hybrid solar cells: the relationship between nanowire morphology and device performance. Proceedings of SPIE, $2011,\ldots$	0.8	0
100	Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching. Applied Surface Science, 2011, 257, 1829-1834.	6.1	39
101	High-efficiency inverted polymer solar cells with solution-processed metal oxides. Solar Energy Materials and Solar Cells, 2011, 95, 2511-2515.	6.2	40
102	Inverted low-bandgap polymer solar cells with long-term stability. , 2011, , .		1
103	Effect of ultrashort silicon nanowires on Si/organic solar cells. , 2011, , .		0
104	Si/silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells. , 2011 , , .		0
105	Fabrication of Silicon Nanostructured Thin Film and Its Transfer from Bulk Wafers onto Alien Substrates. Journal of the Electrochemical Society, 2011, 158, D95.	2.9	8
106	Effect of nanowire length to silicon nanowire/PEDOT:PSS solar cells. , 2011, , .		3
107	Recycling Si wafers to fabricate multiple Si nanohole thin films by metal-assisted etching. , 2011, , .		0
108	Formation of cylindrical profile of Si by KrF excimer laser system for optical interconnect., 2011,,.		0

#	Article	IF	CITATIONS
109	Silicon Nanowire/Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Core-Sheath Heterojunction Solar Cells. , $2011, \dots$		O
110	Nanopatterned optical and magnetic La 0.7 Sr 0.3 MnO 3 arrays: synthesis, fabrication, and properties. , 2010, , .		1
111	Controlled growth of well-aligned ZnO mirco/nanorod arrays on GaN substrates using a novel solution method., 2010,,.		1
112	Low-temperature Heteroepitaxy of Morphology-controlled ZnO Mirco/Nanorod Arrays on GaN Substrates. Chemistry Letters, 2010, 39, 202-203.	1.3	4
113	Enhancing performance of organic–inorganic hybrid solar cells using a fullerene interlayer from all-solution processing. Solar Energy Materials and Solar Cells, 2010, 94, 182-186.	6.2	63
114	Improvement of inverted-type organic solar cells by mild oxygen plasma etching on polymer thin film. Solar Energy Materials and Solar Cells, 2010, 94, 1681-1685.	6.2	8
115	Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells. Organic Electronics, 2010, 11, 1828-1834.	2.6	94
116	Using nanoparticles to synthesize erbium-doped light-emitting thin film. Thin Solid Films, 2010, 518, 5044-5046.	1.8	0
117	Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer. Thin Solid Films, 2010, 518, 4964-4969.	1.8	26
118	Characteristics of n-type ZnO nanorods on top of p-type poly(3-hexylthiophene) heterojunction by solution-based growth. Thin Solid Films, 2010, 518, 6066-6070.	1.8	6
119	Silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells. , 2010, , .		0
120	GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells. Nanotechnology, 2010, 21, 285203.	2.6	28
121	Improved performance of inverted-type organic solar cells by surface modification on polymer thin film. , 2010, , .		0
122	Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) heterojunction. Journal of Applied Physics, 2010, 107, 034310.	2.5	19
123	Employing TiO ₂ nanorods to improve inverted polymer solar cells. , 2010, , .		0
124	Transfer of silicon nanowires onto alien substrates by controlling direction of metal-assisted etching. , 2010, , .		0
125	Compact ZnO nanorods composed film by re-growth of ZnO nanorods and Ar plasma treatment. , 2010, , .		0
126	Controlled formation of well-aligned GaAs nanowires with a high aspect ratio on transparent substrates. Semiconductor Science and Technology, 2010, 25, 065014.	2.0	4

#	Article	IF	CITATIONS
127	Reducing Si Reflectance by Improving Density and Uniformity of Si Nanowires Fabricated by Metal-Assisted Etching. , 2010, , .		1
128	Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells. Chemistry of Materials, 2010, 22, 3108-3113.	6.7	241
129	Influence of Architecture-Controlled GaN Rod Arrays on the Output Power of GaN LEDs. IEEE Photonics Technology Letters, 2010, 22, 1847-1849.	2.5	O
130	GaAs nanowire/PEDOT:PSS hybrid solar cells: Morphological and performance characterization. , 2010, , .		0
131	Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices. Nanoscale, 2010, 2, 1448.	5.6	20
132	Efficient and Air-Stable Polymer Photovoltaic Devices With \$hbox{WO}_{3}\$â€"\$hbox{V}_{2}hbox{O}_{5}\$ Mixed Oxides as Anodic Modification. IEEE Electron Device Letters, 2010, 31, 332-334.	3.9	67
133	Effect of nanowire lengths on polymer-Si nanowire hybrid solar cells. , 2010, , .		O
134	The inverted polymer solar cells using cuprous oxide as a hole transportation layer. , 2010, , .		0
135	Use of SiO <inf>2</inf> nanoparticles as etch mask to generate large-area GaAs nanowires by Induced-Coupled Plasma Reactive Ion Etcher., 2009,,.		0
136	Solution-based grown ZnO nanorods/polyfluorene light emitting diodes for white light emission. , 2009, , .		0
137	Accurate measurement of performance of polymer solar cell with highly conductive PEDOT:PSS., 2009,,.		2
138	Transfer of InGaP/GaAs double-junction micro-cuboid array onto foreign substrates using epitaxial lift-off (ELO) technique. , 2009, , .		1
139	Air-stable polymer/ZnO nanorod hybrid solar cell. , 2009, , .		0
140	Improved performance of polymer/ZnO nanorod hybrid solar cells by slow drying of the photoactive layer. , 2009, , .		1
141	High efficiency of flexible polymer solar cell based on poly(3- hexylthiophene)/fullerene., 2009, , .		O
142	Solution-processed vanadium oxide interlayer for improving the performance of polymer/ZnO nanorod hybrid solar cells. , 2009, , .		0
143	Investigation of enhanced light extraction efficiency of light emitting diodes with ZnO nanorod arrays. , 2009, , .		0
144	Solution-processed fullerene interlayer for organic-inorganic hybrid solar cells., 2009,,.		0

#	Article	IF	Citations
145	Effect of solvent on morphological properties of TiO x thin film. Proceedings of SPIE, 2009, , .	0.8	O
146	Fabrication of crystalline Si spheres with atomic-scale surface smoothness using homogenized KrF excimer laser reformation system. Journal of Vacuum Science & Technology B, 2009, 27, 1156.	1.3	5
147	Fabrication of large-area gallium arsenide nanowires using silicon dioxide nanoparticle mask. Journal of Vacuum Science & Technology B, 2009, 27, 2449-2452.	1.3	5
148	High Efficiency Flexible Polymer Solar Cells Based on PET Substrates with a Nonannealing Active Layer. Journal of the Electrochemical Society, 2009, 156, B1188.	2.9	17
149	Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1608-1612.	6.2	60
150	Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass. Solar Energy Materials and Solar Cells, 2009, 93, 621-624.	6.2	117
151	Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics. Applied Surface Science, 2009, 255, 8566-8570.	6.1	27
152	Silicon Waveguide Sidewall Smoothing by KrF Excimer Laser Reformation. Journal of Lightwave Technology, 2009, 27, 887-892.	4.6	24
153	Performance enhancement of organic/inorganic hybrid solar cells by improving the optical absorption of polymer., 2009,,.		2
154	Low-Temperature Growth of Surface-Architecture-Controlled ZnO Nanorods on Si Substrates. Journal of Physical Chemistry C, 2009, 113, 512-517.	3.1	19
155	Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions. Applied Physics Letters, 2009, 95, 131117.	3.3	82
156	Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods. Organic Electronics, 2009, 10, 1060-1065.	2.6	154
157	Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes. Nano Letters, 2009, 9, 1839-1843.	9.1	83
158	Improving the property of ZnO nanorods using hydrogen peroxide solution. Journal of Crystal Growth, 2008, 310, 2806-2809.	1.5	24
159	Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. Journal of Applied Physics, 2008, 103, 014304.	2.5	82
160	Synthesis and characterization of ZnO nanorod arrays and their integration into polymer solar cells. , $2008, , .$		1
161	White-light electroluminescence from ZnO nanowires/polyfluorene heterojunction diodes., 2008,,.		0
162	Fabrication of sub-micrometer Si spheres with atomic-scale surface smoothness using homogenized KrF excimer laser reformation system. , 2008, , .		0

#	Article	IF	Citations
163	Nano-Structured and Micro-Structured Semiconductors for Higher Efficiency Solar Cells., 2008,,.		1
164	Growth of Feature-Controlled ZnO Nanotube Arrays by Using Patterned Apertures with Hydrothermal Method. , 2008, , .		0
165	Znic Oxide Nanowires with Ultra-Thin and Low-Resistance Seed Layer. , 2008, , .		0
166	White Light Electroluminescence from Zinc Oxide Nanowire Composites. , 2008, , .		0
167	Controlled Growth of Zinc Oxide Nanorod Array in Aqueous Solution by Zinc Oxide Sol-Gel Thin Film in Relation to Growth Rate and Optical Property. , 2008, , .		7
168	ZnO nanorod-based polymer solar cells with optimized electrodes. , 2008, , .		1
169	Study of the structural and luminescent properties of ZnO nanorod arrays with hydrogen peroxide treatment. Proceedings of SPIE, 2008, , .	0.8	0
170	Improving the conductivity of hole injection layer by heating PEDOT:PSS. Proceedings of SPIE, 2008, , .	0.8	8
171	Effective energy densities in KrF excimer laser reformation as a sidewall smoothing technique. Journal of Vacuum Science & Technology B, 2008, 26, 110.	1.3	9
172	Surface potential and magnetic properties of La0.7Sr0.3MnO3 periodic arrays fabricated by direct electron beam writing. Journal of Applied Physics, 2008, 104, .	2.5	2
173	Electroluminescence from monolayer ZnO nanoparticles using dry coating technique. Applied Physics Letters, 2008, 92, .	3.3	27
174	Improving Electrical Properties of ZnO Thin Films by the Combination of Plasma Treatment, Post-Annealing and Doping. , 2008, , .		1
175	Transfer of aligned single crystal silicon nanowires to transparent substrates. , 2008, , .		3
176	High-density one-dimensional well-aligned germanium quantum dots on a nanoridge array. Applied Physics Letters, 2008, 93, 083101.	3.3	8
177	ZnO nanorods/P3HT nanocomposite film light emitting diodes. , 2008, , .		0
178	Electroluminescence from nanoparticles/organic composites. , 2007, , .		1
179	Enhanced ZnO band-gap emission of electroluminescence from ZnO nanoparticles/Organic nanocomposites using a hole-transporting material. , 2007, , .		0
180	White light electroluminescence from europium oxide nanocrystal/organic composites. , 2007, , .		0

#	Article	IF	Citations
181	Enhanced ZnO band-gap emission of electroluminescence from ZnO nanoparticles/Organic nanocomposites using a hole-transporting material. , 2007, , .		О
182	Opposite temperature effects of quantum-dot laser under dual-wavelength operation. Applied Physics Letters, 2007, 90, 181113.	3.3	2
183	Sidewall smoothing of Si/SiO2 waveguide by excimer laser reformation. , 2007, , .		O
184	Sidewall Smoothing for Si/SiO <inf>2</inf> Waveguides by Excimer Laser Reformation. , 2007, , .		0
185	Anticompetition Between Laser Modes in Quantum-Dot Laser. IEEE Photonics Technology Letters, 2007, 19, 889-891.	2.5	3
186	Formation of self-organized platinum nanoparticles and their microphotoluminescence enhancement in the visible light region. Journal of Applied Physics, 2007, 102, 073508.	2.5	15
187	Enhancement of $1.5 {\rm \^A\^l} \frac{1}{4}$ m emission in erbium-doped spin-on glass by furnace annealing. Thin Solid Films, 2007, 515, 6754-6757.	1.8	12
188	Synthesis and luminescence properties of europium doped silica thin film. Materials Letters, 2007, 61, 3802-3804.	2.6	11
189	Electroluminescence from ZnO nanoparticles/organic nanocomposites. Applied Physics Letters, 2006, 89, 231116.	3.3	77
190	Investigation of phonon bottleneck effect on QD lasers. , 2006, , .		0
191	Nanophotonic boxes to modify black-body radiation for visible light emission. , 2006, , .		0
192	Emitting 1530 nm light on Si with optical gain from light emitting layer consisting of Er 2 O 3 , P 2 O 5 , Yb 2 O 3 nanoparticles and spin-on glass. , 2006, , .		0
193	Anticompetition of laser modes in quantum dot lasers. , 2006, 6129, 612901.		0
194	Rigorous carrier dynamic model of electroluminescent metal-oxide-semiconductor silicon tunneling diodes. Journal of Applied Physics, 2006, 100, 054509.	2.5	3
195	2.2 μm axial resolution optical coherence tomography based on a 400 nmâ€bandwidth superluminescent diode. Scanning, 2006, 28, 11-14.	1.5	4
196	Broad-Gain Measurement of Semiconductor Optical Amplifier with Nonidentical Multiple Quantum Wells. Japanese Journal of Applied Physics, 2006, 45, L259-L261.	1.5	0
197	Use of SiO[sub 2] nanoparticles as etch mask to generate Si nanorods by reactive ion etch. Journal of Vacuum Science & Technology B, 2006, 24, 599.	1.3	27
198	Influence of geometrical factors on angled broad-area semiconductor lasers for high-output power with good beam quality., 2005, 5738, 388.		0

#	Article	IF	CITATIONS
199	Wavelength switching and light modulation in laser diodes with nonidentical multiple quantum wells. , 2005, , .		O
200	Semiconductor laser for all-optical switching between medium-wave band and long-wave band in optical fiber communication. , $2005, , .$		0
201	Emitting 1530-nm light from mixture of Er 2 O 3 , P 2 O 5 nanoparticles and spin-on-glass on silicon. , 2005, 5723, 89.		0
202	Tunable and high-power semiconductor laser with good beam quality in optical-communication band. , 2005, , .		0
203	Investigation of laser-mode anticompetition in semiconductor lasers. IEEE Journal of Quantum Electronics, 2005, 41, 1-8.	1.9	2
204	Anticompetition of laser modes in quantum dot lasers. , 2005, , .		0
205	Room temperature Si laser at Si indirect-bandgap energy by electrical pumping. , 2005, , .		0
206	Electrically-pumped Si-laser using nano-particle-modified metal-oxide-Si structures., 2005,,.		0
207	Optical gain at 1530 nm from Si-based light emitting layer containing mixture of Er/sub 2/O/sub 3/, P/sub 2/O/sub 5/,Yb/sub 2/O/sub 3/ nanoparticles and spin-on glass. , 2005, , .		0
208	Blackbody radiation modified to enhance blue spectrum. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1517.	2.1	5
209	Simultaneous generation of eight wavelengths with about 20-nm spacing from a single semiconductor laser. IEEE Photonics Technology Letters, 2005, 17, 675-677.	2.5	1
210	Influence of Separate Confinement Heterostructure on Emission Bandwidth of InGaAsP Superluminescent Diodes/Semiconductor Optical Amplifiers With Nonidentical Multiple Quantum Wells. IEEE Photonics Technology Letters, 2004, 16, 1441-1443.	2.5	19
211	Optical Components for Communications. , 2004, , .		8
212	Influence of Separate Confinement Heterostructure Layer on Carrier Distribution in InGaAsP Laser Diodes with Nonidentical Multiple Quantum Wells. Japanese Journal of Applied Physics, 2004, 43, 7032-7035.	1.5	1
213	174-nm Mode Spacing in Dual-Wavelength Semiconductor Laser Using Nonidentical InGaAsP Quantum Wells. IEEE Photonics Technology Letters, 2004, 16, 371-373.	2.5	19
214	High-Power Angled Broad-Area 1.3- <tex>\$muhboxm\$</tex> Laser Diodes With Good Beam Quality. IEEE Photonics Technology Letters, 2004, 16, 2412-2414.	2.5	16
215	Tunable diffraction of magnetic fluid films and its potential application in coarse wavelength-division multiplexing. Optics Letters, 2004, 29, 1867.	3.3	43
216	Angled broad-area semiconductor lasers to emit high output power with good beam quality. , 2004, 5365, 133.		0

#	Article	IF	Citations
217	Dual-wavelength semiconductor laser with 191-nm mode spacing. , 2004, , .		0
218	Passive Components (II)., 2004,, 277-320.		1
219	A New type of Gain Nonlinearity Leading to Anti-competition of Laser Mode. , 2004, , .		0
220	Enhancing electroluminescence from metal-oxide–silicon tunneling diodes by nano-structures of oxide grown by liquid-phase method. Materials Chemistry and Physics, 2003, 77, 430-433.	4.0	3
221	Light-emitting diodes on Si., 2003, , .		4
222	Improved temperature characteristics of laser diodes with nonidentical multiple quantum wells due to temperature-induced carrier redistribution. Applied Physics Letters, 2003, 82, 3403-3405.	3.3	7
223	Anticompetition of laser modes. Applied Physics Letters, 2003, 82, 3611-3613.	3.3	9
224	Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes. Journal of Applied Physics, 2003, 93, 4253-4259.	2.5	14
225	Electron-Determined Nonuniform Carrier Distribution among InGaAsP Multiple Quantum Wells. Japanese Journal of Applied Physics, 2003, 42, 5557-5558.	1.5	3
226	Extremely broadband superluminescent diodes/semiconductor optical amplifiers in optical communication band. , 2003, , .		3
227	Broadband tuning in optical communication band using Fabry-Perot laser diodes without antireflection coating. , 2003, , .		0
228	Improved temperature characteristics of semiconductor lasers due to carrier redistribution among nonidentical multiple quantum wells. , 2003, , .		0
229	Radiative and nonradiative recombinations in efficient light-emitting metal-oxide-silicon tunneling diodes. , 2003, , .		0
230	Extremely Broadband InGaAsP/InP Superluminescent Diode/Semiconductor Optical Amplifiers with Emission Spectrum Covering from 1250 nm to 1650 nm., 2003, , .		0
231	Peculiarities of emission characteristics of semiconductor optical amplifier with multiple quantum wells., 2003,,.		1
232	The Roughness-Enhanced Light Emission from Metal-Oxide-Silicon Light-Emitting Diodes Using Very High Vacuum Prebake. Japanese Journal of Applied Physics, 2002, 41, L326-L328.	1.5	9
233	Significant influence of surface states on the electroluminescence of CdS nanoparticles. , 2002, 4808, 156.		1
234	Photoluminescence and electroluminescence studies on ITO/SiO 2 /Si tunneling diodes for efficient light emission from silicon. , 2002, , .		0

#	Article	IF	Citations
235	Reducing temperature dependence of semiconductor lasers using nonidentical multiple quantum wells., 2002, 4651, 137.		O
236	Semiconductor lasers tunable from 1.3 î¼m to 1.54 î¼m for optical communication. , 2002, 4653, 96.		0
237	Nanostructured metal-oxide semiconductor devices for efficient band-edge electroluminescence. , 2002, , .		0
238	Nanoparticle-modified metal–oxide–silicon structure enhancing silicon band-edge electroluminescence to near-lasing action. Optics Letters, 2002, 27, 713.	3.3	14
239	External-cavity semiconductor laser tunable from 1.3 to 1.54 \hat{l} /4m for optical communication. IEEE Photonics Technology Letters, 2002, 14, 3-5.	2.5	45
240	<title>CdS nanoparticle light-emitting diode on Si</title> ., 2002,,.		7
241	The band-edge light emission from the metal-oxide-silicon tunneling diode on (110) substrates. Solid-State Electronics, 2002, 46, 1113-1116.	1.4	8
242	Electroluminescence at silicon band gap energy from mechanically pressed indium–tin–oxide/Si contact. Applied Physics Letters, 2001, 78, 1808-1810.	3.3	2
243	Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers–superluminescent diodes. Optics Letters, 2001, 26, 1099.	3.3	35
244	Quasi-3-D beam-propagation method for modeling nonlinear wavelength conversion. Journal of Lightwave Technology, 2001, 19, 772-779.	4.6	4
245	Extremely broadband tunable semiconductor lasers for optical communication., 2001,,.		0
246	Enhanced reliability of electroluminescence from metal–oxide–silicon tunneling diodes by deuterium incorporation. Applied Physics Letters, 2001, 78, 1397-1399.	3. 3	5
247	Electroluminescence and Spectral Shift of CdS Nanoparticles on Si Wafer. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
248	Electroluminescence at Si bandgap energy from metal-oxide-semiconductor tunneling diodes. , 2001, 4293, 147.		0
249	Characteristics of laser diodes influenced by electron-dominant nonuniform carrier distribution., 2001, 4283, 659.		0
250	<title>Extremely broadband superluminescent diodes/semiconductor laser amplifiers using nonidentical InGaAsP quantum wells</title> ., 2001, 4292, 172.		0
251	Carrier lifetime measurement on electroluminescent metal–oxide–silicon tunneling diodes. Applied Physics Letters, 2001, 79, 2264-2266.	3.3	8
252	Model for band-edge electroluminescence from metal–oxide–semiconductor silicon tunneling diodes. Journal of Applied Physics, 2001, 90, 789-793.	2.5	18

#	Article	IF	CITATIONS
253	Reduced temperature dependence of luminescence from silicon due to field-induced carrier confinement. Applied Physics Letters, 2001, 78, 261-263.	3.3	3
254	Visible and band edge electroluminescence from indium tin oxide/SiO2/Si metal–oxide–semiconductor structures. Journal of Applied Physics, 2001, 89, 323-326.	2.5	11
255	Extremely broadband InGaAsP/InP superluminescent diodes. Electronics Letters, 2000, 36, 2093.	1.0	37
256	Infrared electroluminescence from metal-oxide-semiconductor structures on silicon. Journal of Physics Condensed Matter, 2000, 12, L205-L210.	1.8	5
257	Hot carrier recombination model of visible electroluminescence from metal–oxide–silicon tunneling diodes. Applied Physics Letters, 2000, 77, 4347-4349.	3.3	20
258	Room-temperature electroluminescence from electron-hole plasmas in the metal–oxide–silicon tunneling diodes. Applied Physics Letters, 2000, 76, 1516-1518.	3.3	82
259	Electroluminescence at Si band gap energy based on metal–oxide–silicon structures. Journal of Applied Physics, 2000, 87, 8793-8795.	2.5	35
260	Roughness-enhanced electroluminescence from metal oxide silicon tunneling diodes. IEEE Electron Device Letters, 2000, 21, 601-603.	3.9	30
261	Temperature dependence of the electron–hole-plasma electroluminescence from metal–oxide–silicon tunneling diodes. Applied Physics Letters, 2000, 77, 1111-1113.	3.3	29
262	Short-pulse generation with broad-band tunability from semiconductor lasers in an external ring cavity. IEEE Photonics Technology Letters, 2000, 12, 618-620.	2.5	2
263	Novel self-hybrid mode-locking of semiconductor lasers in an external cavity. IEEE Photonics Technology Letters, 2000, 12, 1243-1245.	2.5	0
264	Quasi-3D beam-propagation method for simulating quasi-phase-matched second-order nonlinear interaction. , 2000, , .		0
265	Broadly tunable semiconductor lasers using asymmetric dual quantum wells. Optics Communications, 1999, 171, 271-277.	2.1	3
266	Comparisons of finite difference beam propagation methods for modeling second-order nonlinear effects. Journal of Lightwave Technology, 1999, 17, 1481-1486.	4.6	11
267	Carrier diffusion effect in tapered semiconductor-laser amplifier. IEEE Journal of Quantum Electronics, 1998, 34, 1247-1256.	1.9	15
268	An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides. Journal of Lightwave Technology, 1998, 16, 1686-1693.	4.6	22
269	Wide-range tunable semiconductor lasers using asymmetric dual quantum wells. IEEE Photonics Technology Letters, 1998, 10, 322-324.	2.5	20
270	Wide-range tunable dual-wavelength semiconductor laser using asymmetric dual quantum wells. IEEE Photonics Technology Letters, 1998, 10, 1208-1210.	2.5	18

#	Article	IF	CITATIONS
271	Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes. Electronics Letters, 1998, 34, 1230.	1.0	15
272	Carrier distribution in asymmetric dual quantum wells. , 1998, 3419, 341918.		1
273	Nonuniform carrier distribution in multiple quantum well laser diodes. , 1998, , .		O
274	Improved output beam quality using a hyperbolically flared semiconductor laser amplifier. , 1998, , .		0
275	Bi-directional switching based on semiconductor laser/amplifier with shallow-etched bending ridge waveguide. Applied Physics Letters, 1997, 71, 1903-1905.	3.3	1
276	Extremely broadband AlGaAs/GaAs superluminescent diodes. Applied Physics Letters, 1997, 71, 1598-1600.	3.3	81
277	Superluminescent diodes with bent waveguide. IEEE Photonics Technology Letters, 1996, 8, 206-208.	2.5	36
278	Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells. IEEE Photonics Technology Letters, 1996, 8, 1456-1458.	2.5	48
279	Analysis of stability in two-mode laser systems. IEEE Journal of Quantum Electronics, 1996, 32, 1377-1382.	1.9	16
280	Output Beam Quality Improvement Using a Narrow Input for Tapered Semiconductor Laser Amplifiers. , 0, , .		0
281	InGaAsP/InP laser diodes/superluminescent diodes with nonidentical quantum wells., 0,,.		1
282	Quasi-3D beam-propagation method for simulating quasiphase-matched second-order nonlinear interaction. , 0, , .		0
283	Novel optical bistability and hysteresis in multiple-quantum-well lasers. , 0, , .		O
284	Novel electroluminescence from metal-insulator-semiconductor (MIS) structures on Si., 0,,.		0
285	Generation of extremely short pulses from self-hybrid mode-locking of semiconductor lasers. , 0, , .		O
286	SiO/sub 2/-nanoparticles enhancing Si band-edge electroluminescence to nearly lasing actions. , 0, , .		0
287	Nearly lasing actions from metal-oxide-semiconductor structure on Si. , 0, , .		O
288	Electroluminescence and spectral shift of CdS nanoparticles on Si wafer. , 0, , .		0

#	Article	IF	CITATIONS
289	Temperature-induced carrier redistribution among nonidentical multiple quantum wells. , 0, , .		O
290	Broadly tunable dual-wavelength semiconductor laser in optical-communication band., 0,,.		0
291	Using SiO/sub 2/ nanoparticles to efficiently enhance light emission from metal-oxide silicon tunneling diodes on Si. , 0, , .		0
292	High-power semiconductor laser with diffraction-limited output beam. , 0 , , .		0
293	Efficient ligit emission from metal-oxide-sdicontunneling diodes on Si. , 0, , .		0
294	Extremely broadband superluminescent diodes/semiconductor optical amplifiers in optical communication band. , 0, , .		0
295	Mode competition in wide-range tunable dual-wavelength semiconductor laser using nonidentical ingaasp quantum wells. , 0, , .		0
296	Improved temperature characteristics of semiconductor lasers due to carrier redistribution among nonidentical multiple quantum wells. , 0, , .		0
297	Enhancing light-emission efficiency from Si-MOS tunneling diodes by KOH wet etching. , 0, , .		0
298	20nm silicon nanorods fabricated by reactive ion etch. , 0, , .		2
299	Light emission at 1530 nm from mixture of Er/sub 2/O/sub 3/ and P/sub 2/O/sub 5/ nanoparticles on silicon. , 0, , .		0
300	Gain measurement of broadband quantum dot SOA by two-section technique. , 0, , .		0
301	Enhance the blue light emission of black-body radiation with nano-photonic boxes. , 0, , .		O
302	Broadband Wavelength Conversion in Semiconductor Optical Amplifier with Non-identical Multiple Quantum Wells. , 0, , .		1
303	Scalable highly-anisotropic reactive ion etch on Si for nanophotonics. , 0, , .		0
304	Enhance Black-Body Radiation in Blue-Light Range with Metallic Photonic Boxes. , 0, , .		0
305	Generating 1500 nm light from silicon based light-emitting layer mixed with Er/sub 2/O/sub 3/ and Yb/sub 2/O/sub 3/ nanoparticles. , 0, , .		0
306	Superluminescent diodes with output power over 1 W and with diffraction-limited beam quality. , 0, , .		0

#	Article	IF	CITATIONS
307	Nonuniform carrier trapping among quantum dots. , 0, , .		0
308	Laser direct imprint of silicon nanostructure with low damage on Si for optical devices. , 0, , .		0
309	The bandwidth reduction effect of photoluminescence spectrum from nanostructures on silicon. , 0,		O
310	Enhance the blue-light emission of black-body radiation with metallic photonic boxes. , 0, , .		1
311	Novel temperature characteristics of gain behaviors in quantum-dot lasers. , 0, , .		0
312	Energy up conversion caused by metallic photonic boxes., 0,,.		0
313	Atomic metal contacts on the semiconductor by CVD. , 0, , .		0
314	Si-based light emission at 1530 nm with optical gain using mixture of Er/sub 2/O/sub 3/, P/sub 2/O/sub 5/, Yb/sub 2/O/sub 3/ nanoparticles and spin-on glass. , 0, , .		0