Martin Heeney

List of Publications by Citations

Source: https://exaly.com/author-pdf/899397/martin-heeney-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

337 papers	25,793 citations	84 h-index	152 g-index
375 ext. papers	27,831 ext. citations	11.1 avg, IF	6.8 L-index

#	Paper	IF	Citations
337	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. <i>Nature Materials</i> , 2006 , 5, 328-33	27	1836
336	n-Type organic semiconductors in organic electronics. <i>Advanced Materials</i> , 2010 , 22, 3876-92	24	963
335	Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3272-5	16.4	809
334	Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3030-42	16.4	576
333	High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. <i>Advanced Materials</i> , 2012 , 24, 647-52	24	488
332	Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. <i>Chemical Society Reviews</i> , 2011 , 40, 1185-99	58.5	463
331	Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11437-9	16.4	463
330	An Alkylated Indacenodithieno[3,2-b]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses. <i>Advanced Materials</i> , 2018 , 30, 1705209	24	399
329	Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. <i>Chemical Science</i> , 2012 , 3, 485-492	9.4	391
328	Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. <i>Nature Communications</i> , 2013 , 4, 2238	17.4	384
327	Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin-Film Organic Transistors. <i>Advanced Materials</i> , 2009 , 21, 1091-1109	24	382
326	Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. <i>Advanced Functional Materials</i> , 2009 , 19, 1173-1179	15.6	373
325	Recent Progress in High-Mobility Organic Transistors: A Reality Check. <i>Advanced Materials</i> , 2018 , 30, e1801079	24	358
324	Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15073-84	16.4	353
323	High-Performance Polymer-Small Molecule Blend Organic Transistors. <i>Advanced Materials</i> , 2009 , 21, 1166-1171	24	326
322	Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1078-9	16.4	321
321	X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). <i>Journal of the American Chemical Society</i> , 2007 , 129, 3226-37	16.4	317

(2010-2007)

320	Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer. <i>Chemical Communications</i> , 2007 , 5061-3	5.8	298	
319	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. <i>Macromolecules</i> , 2007 , 40, 7960-7965	5.5	297	
318	A selenophene-based low-bandgap donor-acceptor polymer leading to fast ambipolar logic. <i>Advanced Materials</i> , 2012 , 24, 1558-65	24	288	
317	Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene). <i>Advanced Materials</i> , 2009 , 21, 1568-1572	24	286	
316	2D coherent charge transport in highly ordered©conducting polymers doped by solid state©diffusion. <i>Nature Materials</i> , 2016 , 15, 896-902	27	268	
315	High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory. <i>Advanced Materials</i> , 2007 , 19, 833-837	24	254	
314	Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers. <i>Physical Review B</i> , 2006 , 74,	3.3	244	
313	Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. <i>Nano Letters</i> , 2009 , 9, 4153-7	11.5	235	
312	The Effect of Poly(3-hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene Solar Cells. <i>Advanced Functional Materials</i> , 2008 , 18, 2373-2380	15.6	233	
311	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors poly(3-hexylthiophene), a model study. <i>Progress in Polymer Science</i> , 2013 , 38, 1978-198	9 ^{29.6}	219	
310	Undoped polythiophene field-effect transistors with mobility of 1cm2Vasa. <i>Applied Physics Letters</i> , 2007 , 91, 243512	3.4	210	
309	Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs. <i>Advanced Materials</i> , 2012 , 24, 2441-6	24	202	
308	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6362-6374	16.4	188	
307	Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15869-79	16.4	183	
306	Solution-processed organic transistors based on semiconducting blends. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2562		181	
305	Correlations between mechanical and electrical properties of polythiophenes. ACS Nano, 2010, 4, 7538	-446.7	178	
304	A Simple n-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%. <i>ACS Energy Letters</i> , 2020 , 5, 3663-3671	20.1	175	
303	High mobility ambipolar charge transport in polyselenophene conjugated polymers. <i>Advanced Materials</i> , 2010 , 22, 2371-5	24	172	

302	Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6866-79	16.4	166
301	Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2017 , 27, 1701818	15.6	159
300	Low band gap selenophenediketopyrrolopyrrole polymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. <i>Chemical Science</i> , 2012 , 3, 181-185	9.4	158
299	Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 11834-7	11.5	155
298	Indacenodithiophene-co-benzothiadiazole Copolymers for High Performance Solar Cells or Transistors via Alkyl Chain Optimization. <i>Macromolecules</i> , 2011 , 44, 6649-6652	5.5	152
297	On the role of intermixed phases in organic photovoltaic blends. <i>Energy and Environmental Science</i> , 2013 , 6, 2756	35.4	150
296	Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. <i>Advanced Functional Materials</i> , 2011 , 21, 932-940	15.6	150
295	Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10814-5	16.4	148
294	Studies of Highly Regioregular Poly(3-hexylselenophene) for Photovoltaic Applications. <i>Advanced Materials</i> , 2007 , 19, 4544-4547	24	147
293	Controlling the orientation of terraced nanoscale "ribbons" of a poly(thiophene) semiconductor. <i>ACS Nano</i> , 2009 , 3, 780-7	16.7	145
292	Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance. <i>Macromolecules</i> , 2009 , 42, 4661-4666	5.5	145
291	Thiophene and Selenophene Copolymers Incorporating Fluorinated Phenylene Units in the Main Chain: Synthesis, Characterization, and Application in Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2005 , 17, 6567-6578	9.6	145
2 90	Small Molecule/Polymer Blend Organic Transistors with Hole Mobility Exceeding 13 cm(2) V(-1) s(-1). <i>Advanced Materials</i> , 2016 , 28, 7791-8	24	141
289	Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5947-5957	3.8	141
288	Fused dithienogermolodithiophene low band gap polymers for high-performance organic solar cells without processing additives. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2040-3	16.4	135
287	Room-temperature fabrication of ultrathin oxide gate dielectrics for low-voltage operation of organic field-effect transistors. <i>Advanced Materials</i> , 2011 , 23, 971-4	24	131
286	Electrochemical doping in electrolyte-gated polymer transistors. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14367-71	16.4	131
285	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. <i>Applied Physics Letters</i> , 2007 , 90, 062117	3.4	125

(2004-2011)

284	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors <i>Chemistry of Materials</i> , 2011 , 23, 768-770	9.6	120
283	Activated singlet exciton fission in a semiconducting polymer. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12747-54	16.4	119
282	Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12919-26	16.4	119
281	Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. <i>Advanced Functional Materials</i> , 2018 , 28, 1704285	15.6	119
280	Air-stable and high-mobility n-channel organic transistors based on small-molecule/polymer semiconducting blends. <i>Advanced Materials</i> , 2012 , 24, 3205-11	24	116
279	High mobility field-effect transistors with versatile processing from a small-molecule organic semiconductor. <i>Advanced Materials</i> , 2013 , 25, 4352-7	24	116
278	High-Efficiency Organic Photovoltaic Cells Based on the Solution-Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS. <i>Advanced Energy Materials</i> , 2015 , 5, 1401529	21.8	115
277	Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. <i>Advanced Materials</i> , 2012 , 24, 6071-9	24	113
276	The Influence of Film Morphology in High-Mobility Small-Molecule:Polymer Blend Organic Transistors. <i>Advanced Functional Materials</i> , 2010 , 20, 2330-2337	15.6	110
275	Influence of Molecular Design on the Field-Effect Transistor Characteristics of Terthiophene Polymers. <i>Chemistry of Materials</i> , 2005 , 17, 1381-1385	9.6	110
274	The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of High-Performance Polythiophenes. <i>Advanced Functional Materials</i> , 2008 , 18, 742-750	15.6	107
273	Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). <i>Applied Physics Letters</i> , 2008 , 92, 11336	0 3 4	106
272	Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p-Dopant B(CF). <i>Advanced Science</i> , 2018 , 5, 1700290	13.6	104
271	Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synthetic Metals, 2005, 148, 195	-3.98	104
270	A Novel Alkylated Indacenodithieno[3,2-b]thiophene-Based Polymer for High-Performance Field-Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 3922-7	24	100
269	Doping of Conjugated Polythiophenes with Alkyl Silanes. Advanced Functional Materials, 2009, 19, 1906	-19.161	98
268	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. <i>Macromolecules</i> , 2008 , 41, 5709-5715	5.5	97
267	Lamination method for the study of interfaces in polymeric thin film transistors. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13928-9	16.4	96

266	Highly Efficient Patterning of Organic Single-Crystal Transistors from the Solution Phase. <i>Advanced Materials</i> , 2008 , 20, 4044-4048	24	93
265	Polaron Localization at Interfaces in High-Mobility Microcrystalline Conjugated Polymers. <i>Advanced Materials</i> , 2009 , 21, 3759-3763	24	92
264	Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2436		92
263	Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance. <i>Chemistry of Materials</i> , 2016 , 28, 5110-5120	9.6	91
262	Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics. <i>ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Description of Semiconducting Polymer Films for Stretchable Electronics and Polymer Films for Stret</i>	9.5	90
261	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 1208-1217	21.8	90
260	Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 128	17	90
259	Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno[2,3-b]thiophene Terthiophene Polymer and Methanofullerenes. <i>Advanced Materials</i> , 2005 , 17, 2608-2612	24	89
258	Influence of side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15154-7	16.4	88
257	Thermal and structural characteristics of oligo(3-hexylthiophene)s (3HT)n, n = 4-36. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13699-709	16.4	88
256	Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8137-8141	3.8	87
255	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. <i>Macromolecules</i> , 2010 , 43, 1169-1174	5.5	86
254	Polyterthiophenes as Donors for Polymer Solar Cells. Advanced Functional Materials, 2007, 17, 1371-137	'6 5.6	86
253	Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers. <i>Macromolecules</i> , 2014 , 47, 7151-7157	5.5	82
252	Influence of Phase Segregation on Recombination Dynamics in Organic Bulk-Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 1687-1692	15.6	82
251	Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering. <i>Chemical Science</i> , 2015 , 6, 6949-6960	9.4	81
250	A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16257		81
249	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. <i>Polymers</i> , 2016 , 8,	4.5	81

248	Alkylated Selenophene-Based Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8552-8561	16.4	80
247	Sequential Deposition of Organic Films with Eco-Compatible Solvents Improves Performance and Enables Over 12%-Efficiency Nonfullerene Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1808153	24	80
246	Diseleno[3,2-b:2?,3?-d]selenophenes: Diseleno[3,2-b:2?,3?-d]selenophene-Containing High-Mobility Conjugated Polymer for Organic Field-Effect Transistors (Adv. Sci. 13/2019). <i>Advanced Science</i> , 2019 , 6, 1970080	13.6	78
245	Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors. <i>Physical Review B</i> , 2007 , 76,	3.3	78
244	Alkylidene Fluorene Liquid Crystalline Semiconducting Polymers for Organic Field Effect Transistor Devices. <i>Macromolecules</i> , 2004 , 37, 5250-5256	5.5	75
243	"Fibonacci@route" to regioregular oligo(3-hexylthiophene)s. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13695-8	16.4	73
242	Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene-vinylene copolymers. <i>Chemical Science</i> , 2016 , 7, 109	3 - 1 09	9 ⁷²
241	Cyano substituted benzothiadiazole: a novel acceptor inducing n-type behaviour in conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 265-275	7.1	71
240	Domain Compositions and Fullerene Aggregation Govern Charge Photogeneration in Polymer/Fullerene Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1400116	21.8	70
239	The phase behavior of a polymer-fullerene bulk heterojunction system that contains bimolecular crystals. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 499-503	2.6	70
238	Structural characterisation of a red phthalocyanine. <i>Chemical Communications</i> , 2003 , 2064-5	5.8	70
237	Microstructural origin of high mobility in high-performance poly(thieno-thiophene) thin-film transistors. <i>Advanced Materials</i> , 2010 , 22, 697-701	24	69
236	Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. <i>Energy and Environmental Science</i> , 2015 , 8, 3222-3232	35.4	68
235	Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors. <i>Advanced Functional Materials</i> , 2013 , 23, 2091-2098	15.6	68
234	A close look at charge generation in polymer:fullerene blends with microstructure control. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2908-18	16.4	68
233	Alkyl Chain Extension as a Route to Novel Thieno[3,2-b]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. <i>Macromolecules</i> , 2013 , 46, 5961-596	5 5 .5	67
232	Continuous Synthesis of Device-Grade Semiconducting Polymers in Droplet-Based Microreactors. <i>Advanced Functional Materials</i> , 2013 , 23, 2123-2129	15.6	67
231	High-performance organic integrated circuits based on solution processable polymer-small molecule blends. <i>Applied Physics Letters</i> , 2008 , 93, 253301	3.4	67

230	Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 3051	35.4	65
229	Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. <i>Applied Physics Letters</i> , 2007 , 90, 233508	3.4	63
228	Charge photogeneration in polythiophene-perylene diimide blend films. <i>Chemical Communications</i> , 2009 , 5445-7	5.8	62
227	Effects of a heavy atom on molecular order and morphology in conjugated polymer:fullerene photovoltaic blend thin films and devices. <i>ACS Nano</i> , 2012 , 6, 9646-56	16.7	61
226	Photoinduced carrier generation and decay dynamics in intercalated and non-intercalated polymer:fullerene bulk heterojunctions. <i>ACS Nano</i> , 2011 , 5, 5635-46	16.7	61
225	Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3-Hexylthiophene)-Based Solid-State Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 2571-2579	15.6	61
224	Thiophene fluorination to enhance photovoltaic performance in low band gap donor-acceptor polymers. <i>Chemical Communications</i> , 2012 , 48, 11130-2	5.8	60
223	Electronic Structure and Charge-Transport Properties of Polythiophene Chains Containing Thienothiophene Units: A Joint Experimental and Theoretical Study. <i>Chemistry of Materials</i> , 2007 , 19, 4949-4956	9.6	60
222	Hexyl-substituted oligothiophenes with a central tetrafluorophenylene unit: crystal engineering of planar structures for p-type organic semiconductors. <i>Chemical Communications</i> , 2005 , 1465-7	5.8	58
221	Carborane-Induced Excimer Emission of Severely Twisted Bis-o-Carboranyl Chrysene. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10640-10645	16.4	57
220	Thioalkyl-Substituted Benzothiadiazole Acceptors: Copolymerization with Carbazole Affords Polymers with Large Stokes Shifts and High Solar Cell Voltages. <i>Macromolecules</i> , 2014 , 47, 2279-2288	5.5	57
219	Entanglements in marginal solutions: a means of tuning pre-aggregation of conjugated polymers with positive implications for charge transport. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7394-7404	7.1	56
218	Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. <i>Advanced Functional Materials</i> , 2014 , 24, 1474-1482	15.6	56
217	Local charge trapping in conjugated polymers resolved by scanning Kelvin probe microscopy. <i>Physical Review Letters</i> , 2009 , 103, 256803	7.4	56
216	Charge Photogeneration in Low Band Gap Polyselenophene/Fullerene Blend Films. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8068-8075	3.8	55
215	High mobility p-channel organic field effect transistors on flexible substrates using a polymer-small molecule blend. <i>Synthetic Metals</i> , 2009 , 159, 2365-2367	3.6	55
214	In-Plane Liquid Crystalline Texture of High-Performance Thienothiophene Copolymer Thin Films. <i>Advanced Functional Materials</i> , 2010 , 20, 4098-4106	15.6	55
213	Influence of the Electron Deficient Co-Monomer on the Optoelectronic Properties and Photovoltaic Performance of Dithienogermole-based Co-Polymers. <i>Advanced Functional Materials</i> , 2014 , 24, 678-687	15.6	54

(2008-2010)

212	Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells. <i>Advanced Materials</i> , 2010 , 22, 5287-91	24	54	
211	Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes. <i>Materials Horizons</i> , 2014 , 1, 270-279	14.4	53	
210	Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells. <i>ACS Nano</i> , 2009 , 3, 2557-62	16.7	53	
209	Suzuki route to regioregular polyalkylthiophenes using Ir-catalysed borylation to make the monomer, and Pd complexes of bulky phosphanes as coupling catalysts for polymerisation. <i>Tetrahedron Letters</i> , 2006 , 47, 5143-5146	2	53	
208	4-Hexylbithieno[3,2-b:2Bte]pyridine: An Efficient Electron-Accepting Unit in Fluorene and Indenofluorene Copolymers for Light-Emitting Devices. <i>Macromolecules</i> , 2004 , 37, 709-715	5.5	53	
207	The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700464	6.4	52	
206	Air-stable solution-processed hybrid transistors with hole and electron mobilities exceeding 2 cm2 V-1 s-1. <i>Advanced Materials</i> , 2010 , 22, 3598-602	24	52	
205	Phthalocyaninodehydroannulenes. <i>Chemistry - A European Journal</i> , 2000 , 6, 3958-67	4.8	52	
204	Importance of spin-orbit interaction for the electron spin relaxation in organic semiconductors. <i>Physical Review Letters</i> , 2013 , 110, 216602	7.4	50	
203	Radical ion pair mediated triplet formation in polymer-fullerene blend films. <i>Chemical Communications</i> , 2006 , 3939-41	5.8	50	
202	Germaindacenodithiophene based low band gap polymers for organic solar cells. <i>Chemical Communications</i> , 2012 , 48, 2955-7	5.8	49	
201	Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline). <i>Physical Review B</i> , 2009 , 80,	3.3	49	
200	Addition of the Lewis Acid Zn(C F) Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm V s. <i>Advanced Materials</i> , 2019 , 31, e1900871	24	48	
199	An Air-Stable Semiconducting Polymer Containing Dithieno[3,2-b:2Q8ed]arsole. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7148-51	16.4	48	
198	Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene (pBTTT). <i>Advanced Functional Materials</i> , 2015 , 25, 7038-7048	15.6	47	
197	A Systematic Approach to the Design Optimization of Light-Absorbing Indenofluorene Polymers for Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2012 , 2, 260-265	21.8	47	
196	The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6218-6230	13	46	
195	An alignable fluorene thienothiophene copolymer with deep-blue electroluminescent emission at 410 nm. <i>Chemical Communications</i> , 2008 , 1079-81	5.8	44	

194	Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. <i>Journal of Applied Physics</i> , 2007 , 102, 044503	2.5	44
193	Doping of Large Ionization Potential Indenopyrazine Polymers via Lewis Acid Complexation with Tris(pentafluorophenyl)borane: A Simple Method for Improving the Performance of Organic Thin-Film Transistors. <i>Chemistry of Materials</i> , 2016 , 28, 8016-8024	9.6	44
192	Conjugated Copolymers of Vinylene Flanked Naphthalene Diimide. <i>Macromolecules</i> , 2016 , 49, 6384-639	93 5.5	42
191	Bulk Heterojunction Materials Composed of Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene): Ultrafast Electron Transfer and Carrier Recombination [] Journal of Physical Chemistry C, 2008, 112, 7853-7857	3.8	42
190	Structural and Electronic Effects of 1,3,4-Thiadiazole Units Incorporated into Polythiophene Chains. <i>Macromolecules</i> , 2007 , 40, 6585-6593	5.5	42
189	Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. <i>Nature Communications</i> , 2019 , 10, 5159	17.4	41
188	Germanium- and Silicon-Substituted Donor Acceptor Type Copolymers: Effect of the Bridging Heteroatom on Molecular Packing and Photovoltaic Device Performance. <i>Advanced Energy Materials</i> , 2014 , 4, 1400527	21.8	41
187	Synthesis, Characterization, and Field Effect Transistor Properties of Regioregular Poly(3-alkyl-2,5-selenylenevinylene). <i>Macromolecules</i> , 2011 , 44, 5194-5199	5.5	41
186	Solid-state processing of organic semiconductors. <i>Advanced Materials</i> , 2010 , 22, 3942-7	24	41
185	The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells. <i>Scientific Reports</i> , 2016 , 6, 23651	4.9	40
184	Alternating 5,5-Dimethylcyclopentadiene and Diketopyrrolopyrrole Copolymer Prepared at Room Temperature for High Performance Organic Thin-Film Transistors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8094-8097	16.4	39
183	Increased Exciton Dipole Moment Translates into Charge-Transfer Excitons in Thiophene-Fluorinated Low-Bandgap Polymers for Organic Photovoltaic Applications. <i>Chemistry of Materials</i> , 2015 , 27, 7934-7944	9.6	39
182	Comparative Optoelectronic Study between Copolymers of Peripherally Alkylated Dithienosilole and Dithienogermole. <i>Macromolecules</i> , 2012 , 45, 735-742	5.5	39
181	Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors. <i>Organic Electronics</i> , 2011 , 12, 143-147	3.5	39
180	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10383-90	16.4	38
179	Synthesis and characterization of fused pyrrolo[3,2-d:4,5-d\$bisthiazole-containing polymers. Organic Letters, 2010 , 12, 5478-81	6.2	38
178	Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. Journal of Materials Chemistry, 2010 , 20, 1927		37
177	Impact of backbone fluorination on nanoscale morphology and excitonic coupling in polythiophenes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 5113-5118	11.5	36

(2009-2015)

176	Direct Correlation of Charge Transfer Absorption with Molecular Donor:Acceptor Interfacial Area via Photothermal Deflection Spectroscopy. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5256-9	16.4	36
175	Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. <i>Physical Review B</i> , 2011 , 84,	3.3	36
174	Polymer chain/nanocrystal ordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene. <i>Soft Matter</i> , 2006 , 3, 117-121	3.6	35
173	p-Doping of organic hole transport layers in pt perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18971-18979	13	34
172	Influence of polymer ionization potential on the open-circuit voltage of hybrid polymer/TiO2 solar cells. <i>Applied Physics Letters</i> , 2008 , 92, 053308	3.4	34
171	Photoinduced Charge Carrier Generation in Blends of Poly(Thienothiophene) Derivatives and [6,6]-Phenyl-C61-butyric Acid Methyl Ester: Phase Segregation versus Intercalation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15116-15120	3.8	33
170	Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells. <i>Solar Rrl</i> , 2018 , 2, 1800076	7.1	32
169	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. <i>Nature Communications</i> , 2019 , 10, 4475	17.4	31
168	Impact of the Gate Dielectric on Contact Resistance in High-Mobility Organic Transistors. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800723	6.4	31
167	Near Infrared Absorbing Soluble Poly(cyclopenta[2,1-b:3,4-b?]dithiophen-4-one)vinylene Polymers Exhibiting High Hole and Electron Mobilities in Ambient Air. <i>Chemistry of Materials</i> , 2013 , 25, 59-68	9.6	31
166	Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains. <i>ACS Applied Materials & Domains and Semiconductor Films with Large Ordered Domains and Materials & Domains & Domain</i>	9.5	31
165	High mobility ambipolar charge transport in a cross-linked reactive mesogen at room temperature. <i>Applied Physics Letters</i> , 2005 , 87, 172110	3.4	31
164	A gentle introduction to the noble art of flow chemistry. <i>Materials Horizons</i> , 2014 , 1, 373	14.4	30
163	Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. <i>Israel Journal of Chemistry</i> , 2014 , 54, 534-552	3.4	30
162	Novel BODIPY-based conjugated polymers donors for organic photovoltaic applications. <i>RSC Advances</i> , 2013 , 3, 10221	3.7	30
161	Synthetic Aspects of Organic Semiconductors. <i>MRS Bulletin</i> , 2008 , 33, 698-705	3.2	30
160	Introducing a Nonvolatile N-Type Dopant Drastically Improves Electron Transport in Polymer and Small-Molecule Organic Transistors. <i>Advanced Functional Materials</i> , 2019 , 29, 1902784	15.6	29
159	Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine. <i>Journal of Applied Physics</i> , 2009 , 105, 013701	2.5	28

158	Solution processed low-voltage organic transistors and complementary inverters. <i>Applied Physics Letters</i> , 2009 , 95, 103310	3.4	28
157	Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1164-1175	13	28
156	Tetradiketone macrocycle for divalent aluminium ion batteries. <i>Nature Communications</i> , 2021 , 12, 2386	17.4	28
155	Pentafluorobenzene end-group as a versatile handle for fluoro "click" functionalization of polythiophenes. <i>Chemical Science</i> , 2017 , 8, 2215-2225	9.4	27
154	Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO3/Ag/MoO3 electrodes. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 450-455	7.8	27
153	Low band gap dithienogermolodithiophene copolymers with tunable acceptors and side-chains for organic solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14973	13	27
152	Octaalkyl- and Octaalkoxy-2,3-naphthalocyanines 1997 , 01, 77-86		27
151	Combinatorial screening of the effect of temperature on the microstructure and mobility of a high performance polythiophene semiconductor. <i>Applied Physics Letters</i> , 2007 , 90, 012112	3.4	27
150	Investigation of Radical and Cationic Cross-Linking in High-Efficiency, Low Band Gap Solar Cell Polymers. <i>Advanced Energy Materials</i> , 2015 , 5, 1401228	21.8	26
149	Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	26
148	Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. <i>Nature Communications</i> , 2018 , 9, 3237	17.4	26
147	Doping Approaches for Organic Semiconductors. Chemical Reviews, 2021,	68.1	26
146	Synthesis of a Luminescent Arsolo[2,3-d:5,4-d?]bis(thiazole) Building Block and Comparison to Its Phosphole Analogue. <i>Organometallics</i> , 2017 , 36, 2632-2636	3.8	25
145	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12958-12964	16.4	22
144	Optical Acetone Vapor Sensors Based on Chiral Nematic Liquid Crystals and Reactive Chiral Dopants. <i>Advanced Optical Materials</i> , 2016 , 4, 592-596	8.1	22
143	Alternating Copolymers Incorporating Dithienogemolodithiophene for Field-Effect Transistor Applications. <i>Macromolecules</i> , 2014 , 47, 8602-8610	5.5	22
142	A comparison between dithienosilole and dithienogermole donor ceptor type co-polymers for organic bulk heterojunction photovoltaic devices. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9975		22
141	Hexyl-Substituted Oligoselenophenes with Central Tetrafluorophenylene Units: Synthesis, Characterisation and Application in Organic Field Effect Transistors. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1839-1843	4.8	22

140	Cyano substituted benzotriazole based polymers for use in organic solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6465-6470	13	21	
139	The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor copolymers. <i>Polymer Chemistry</i> , 2015 , 6, 3098-3109	4.9	21	
138	Polythiophenes with vinylene linked ortho, meta and para-carborane sidechains. <i>Polymer Chemistry</i> , 2014 , 5, 6190-6199	4.9	21	
137	A capping methodology for the synthesis of lower mu-oxo-phthalocyaninato silicon oligomers. Journal of the American Chemical Society, 2005 , 127, 16382-3	16.4	21	
136	Hall Effect in Polycrystalline Organic Semiconductors: The Effect of Grain Boundaries. <i>Advanced Functional Materials</i> , 2020 , 30, 1903617	15.6	21	
135	Systematic Tuning of 2,1,3-Benzothiadiazole Acceptor Strength by Monofunctionalization with Alkylamine, Thioalkyl, or Alkoxy Groups in Carbazole DonorAcceptor Polymers. <i>Macromolecules</i> , 2017 , 50, 2736-2746	5.5	20	
134	The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3722-3729	7.1	20	
133	Crucial Role of Fluorine in Fully Alkylated Ladder-Type Carbazole-Based Nonfullerene Organic Solar Cells. <i>ACS Applied Materials & Description</i> (12, 9555-9562)	9.5	20	
132	Incorporation of benzocarborane into conjugated polymer systems: synthesis, characterisation and optoelectronic properties. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 232-239	7.1	20	
131	In-situ monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. <i>Applied Physics Letters</i> , 2013 , 102, 173302	3.4	20	
130	A comprehensive study of the effect of reactive end groups on the charge carrier transport within polymerized and nonpolymerized liquid crystals. <i>Journal of Applied Physics</i> , 2007 , 101, 023713	2.5	20	
129	Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d?]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2247-2258	7.1	19	
128	Carborane-Induced Excimer Emission of Severely Twisted Bis-o-Carboranyl Chrysene. <i>Angewandte Chemie</i> , 2018 , 130, 10800-10805	3.6	19	
127	Classification of semiconducting polymeric mesophases to optimize device postprocessing. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 1641-1653	2.6	19	
126	Electrooptical Spectroscopy of Uniaxially Aligned Polythiophene Films in Field-Effect Transistors. <i>Chemistry of Materials</i> , 2013 , 25, 2075-2082	9.6	19	
125	Electrical Properties of Reactive Liquid Crystal Semiconductors. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 488-491	1.4	19	
124	Hybrid complementary circuits based on p-channel organic and n-channel metal oxide transistors with balanced carrier mobilities of up to 10 cm2/Vs. <i>Applied Physics Letters</i> , 2016 , 109, 263301	3.4	19	
123	Diseleno[3,2-:2���]selenophene-Containing High-Mobility Conjugated Polymer for Organic Field-Effect Transistors. <i>Advanced Science</i> , 2019 , 6, 1900245	13.6	18	

122	Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Short-Circuit Current and High Efficiency >11% in As-Cast Organic Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1904956	15.6	18
121	Benzocarborano[2,1-b:3,4-b?]dithiophene Containing Conjugated Polymers: Synthesis, Characterization, and Optoelectronic Properties. <i>Macromolecules</i> , 2014 , 47, 89-96	5.5	18
120	Hybrid Polymer Solar Cells from Zinc Oxide and Poly(3-hexylselenophene). <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18901-18908	3.8	18
119	A diphthalocyanino-dehydro[12]annulene. <i>Chemical Communications</i> , 2000 , 969-970	5.8	18
118	即Insubstituted meso-positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor配cceptor (DA) conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 4030-4040	7.1	17
117	Controlled synthesis of conjugated random copolymers in a droplet-based microreactor. <i>Materials Horizons</i> , 2014 , 1, 214-218	14.4	17
116	Importance of intramolecular electron spin relaxation in small molecule semiconductors. <i>Physical Review B</i> , 2011 , 84,	3.3	17
115	Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor. <i>Applied Physics Letters</i> , 2006 , 89, 242104	3.4	17
114	Visualizing the Vertical Energetic Landscape in Organic Photovoltaics. <i>Joule</i> , 2019 , 3, 2513-2534	27.8	16
113	Organic field-effect transistors of poly(2,5-bis(3-dodecylthiophen-2-yl)thieno[2,3-b]thiophene) deposited on five different silane self-assembled monolayers. <i>Chemical Communications</i> , 2008 , 871-3	5.8	16
112	Relationship between Film Morphology, Optical, and Conductive Properties of Poly(thienothiophene): [6,6]-Phenyl C-61-Butyric Acid Methyl Ester Bulk Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 15973-15979	3.8	16
111	A study of the effects metal residues in poly(9,9-dioctylfluorene) have on field-effect transistor device characteristics. <i>Synthetic Metals</i> , 2007 , 157, 872-875	3.6	16
110	Alkylated indacenodithieno[3,2-b]thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2004-2009	7.1	15
109	Effects of thermal annealing upon the nanomorphology of poly(3-hexylselenophene)-PCBM blends. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1454-60	4.8	15
108	Real-Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. <i>Advanced Energy Materials</i> , 2016 , 6, 1502025	21.8	15
107	Diselenogermole as a novel donor monomer for low band gap polymers. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1986-1994	13	14
106	An Air-Stable Semiconducting Polymer Containing Dithieno[3,2-b:2?,3?-d]arsole. <i>Angewandte Chemie</i> , 2016 , 128, 7264-7267	3.6	14
105	Heavy-atom effects on intramolecular singlet fission in a conjugated polymer. <i>Journal of Chemical Physics</i> , 2019 , 151, 044902	3.9	14

(2012-2012)

104	Fused pyrrolo[3,2-d:4,5-d?]bisthiazole-containing polymers for using in high-performance organic bulk heterojunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 96, 112-116	6.4	14	
103	Photoconductivity anisotropy study in uniaxially aligned polymer based planar photodiodes. <i>Organic Electronics</i> , 2012 , 13, 36-42	3.5	14	
102	Impact of p-type doping on charge transport in blade-coated small-molecule:polymer blend transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15368-15376	7.1	14	
101	Copper (I) Selenocyanate (CuSeCN) as a Novel Hole-Transport Layer for Transistors, Organic Solar Cells, and Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1707319	15.6	13	
100	Vinylene-Linked Oligothiophene-Difluorobenzothiadiazole Copolymer for Transistor Applications. <i>ACS Applied Materials & Differences</i> , 2016 , 8, 31154-31165	9.5	13	
99	A general mechanism for controlling thin film structures in all-conjugated block copolymer:fullerene blends. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14711-14719	13	13	
98	Rapid flow-based synthesis of poly(3-hexylthiophene) using 2-methyltetrahydrofuran as a bio-derived reaction solvent. <i>European Polymer Journal</i> , 2016 , 80, 240-246	5.2	13	
97	Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 700-707	2.6	12	
96	Carrier-density dependence of the hole mobility in doped and undoped regioregular poly(3-hexylthiophene). <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 138-141	1.3	12	
95	Predicting the photocurrentlomposition dependence in organic solar cells. <i>Energy and Environmental Science</i> , 2021 , 14, 986-994	35.4	12	
94	Effect of a heavy heteroatom on triplet formation and interactions in single conjugated polymer molecules and aggregates. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 28239-28248	3.6	11	
93	Fused Ring Cyclopentadithienothiophenes as Novel Building Blocks for High Field Effect Mobility Conjugated Polymers. <i>Macromolecules</i> , 2015 , 48, 5605-5613	5.5	11	
92	Naphthalene diimide based near-infrared luminogens with aggregation-induced emission characteristics for biological imaging and high mobility ambipolar transistors. <i>Science China Chemistry</i> , 2020 , 63, 1198-1207	7.9	11	
91	Core Fluorination Enhances Solubility and Ambient Stability of an IDT-Based n-Type Semiconductor in Transistor Devices. <i>Advanced Functional Materials</i> , 2020 , 30, 2000325	15.6	11	
90	A novel low-bandgap pyridazine thiadiazole-based conjugated polymer with deep molecular orbital levels. <i>Polymer Chemistry</i> , 2020 , 11, 581-585	4.9	11	
89	A versatile star-shaped organic semiconductor based on benzodithiophene and diketopyrrolopyrrole. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6622-6629	7.1	10	
88	Conjugated polymer-porphyrin complexes for organic electronics. <i>ChemPhysChem</i> , 2015 , 16, 1223-30	3.2	10	
87	Charge photogeneration in donor/acceptor organic solar cells. <i>Journal of Photonics for Energy</i> , 2012 , 2, 021001	1.2	10	

86	Polyterthiophenes Incorporating 3,4-Difluorothiophene Units: Application in Organic Field-Effect Transistors. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2642-2648	2.6	10
85	One-Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Air-Stable High-Performance n-Type Organic Field-Effect Transistors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5970-5977	16.4	10
84	Measurement of Cohesion and Adhesion of Semiconducting Polymers by Scratch Testing: Effect of Side-Chain Length and Degree of Polymerization. <i>ACS Macro Letters</i> , 2018 , 7, 1003-1009	6.6	9
83	Chalcogen Bridged Thieno- and Selenopheno[2,3-d:5,4-d?]bisthiazole and Their Diketopyrrolopyrrole Based Low-Bandgap Copolymers. <i>Macromolecules</i> , 2018 , 51, 6076-6084	5.5	9
82	The effect of deuteration on organic magnetoresistance. Synthetic Metals, 2011, 161, 608-612	3.6	9
81	Observation of bi-polarons in blends of conjugated copolymers and fullerene derivatives. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 16579-84	3.6	9
80	Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2006 , 364, 2779-87	3	9
79	Understanding Charge Transport in High-Mobility p-Doped Multicomponent Blend Organic Transistors. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000539	6.4	9
78	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor-Acceptor Conjugated Polymers. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19679-19684	16.4	9
77	The Influence of Backbone Fluorination on the Dielectric Constant of Conjugated Polythiophenes. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700375	6.4	9
76	Implicit and explicit host effects on excitons in pentacene derivatives. <i>Journal of Chemical Physics</i> , 2018 , 148, 104108	3.9	8
75	Synthesis of tetraselenophenoporphyrazine and its application in transistor devices. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6198	7.1	8
74	Routes to some 3,6-disubstituted phthalonitriles and examples of phthalocyanines derived therefrom: An overview. <i>Journal of Porphyrins and Phthalocyanines</i> , 2013 , 17, 649-664	1.8	8
73	Bulk charge transport in liquid-crystalline polymer semiconductors based on poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). <i>Polymer Chemistry</i> , 2010 , 1, 1448	4.9	8
72	Theoretical and experimental investigations of a polyalkylated-thieno[3,2-b]thiophene semiconductor. <i>Journal of Applied Physics</i> , 2008 , 104, 083705	2.5	8
71	TOF mobility measurements in pristine films of P3HT: control of hole injection and influence of film thickness 2006 , 6334, 16		8
70	The influence of molecular weight on the microstructure and thin film transistor characteristics of pBTTT polymers. 2006 ,		8
69	Terahertz short-range mobilities in neat and intermixed regions of polymer:fullerene blends with controlled phase morphology. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22301-22309	13	8

(2021-2019)

68	Dithieno[3,2-b:2였어]arsole-containing conjugated polymers in organic photovoltaic devices. <i>Dalton Transactions</i> , 2019 , 48, 6676-6679	4.3	7	
67	Correlating the Structural and Photophysical Properties of Ortho, Meta, and Para-Carboranyl Inthracene Dyads. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000312	6.4	7	
66	Characterization of Interfacial Structure in Polymer-Fullerene Bulk Heterojunctions via ^{13}C {^{2}H} Rotational Echo Double Resonance NMR. <i>Physical Review Letters</i> , 2018 , 121, 026101	7.4	7	
65	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. <i>Angewandte Chemie</i> , 2020 , 132, 13058-13064	3.6	7	
64	Electron spin relaxation in organic semiconductors probed through BR. <i>Journal of Physics:</i> Conference Series, 2011 , 292, 012004	0.3	6	
63	The effects of metal impurities in poly[(2,5-bis(3-decylthiophen-2-yl)thieno[2,3-b]thiophene] on field-effect transistor properties. <i>Organic Electronics</i> , 2009 , 10, 215-221	3.5	6	
62	Polymer thin film transistor without surface pretreatment on silicon nitride gate dielectric. <i>Applied Physics Letters</i> , 2008 , 93, 073305	3.4	6	
61	A Tri-Channel Oxide Transistor Concept for the Rapid Detection of Biomolecules Including the SARS-CoV-2 Spike Protein. <i>Advanced Materials</i> , 2021 , e2104608	24	6	
60	Polymer Light-Emitting Transistors With Charge-Carrier Mobilities Exceeding 1 cm2 V 1 s 1 . <i>Advanced Electronic Materials</i> , 2020 , 6, 1901132	6.4	6	
59	Ring fusion in tetrathienylethene cored perylene diimide tetramers affords acceptors with strong and broad absorption in the near-UV to visible region. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 17237-	172 ¹ 44	6	
58	Thioalkyl- and sulfone-substituted poly(p-phenylene vinylene)s. <i>Polymer Chemistry</i> , 2019 , 10, 738-750	4.9	5	
57	Indacenodithiophene-benzothiadiazole organic field-effect transistors with gravure-printed semiconductor and dielectric on plastic. <i>MRS Communications</i> , 2015 , 5, 599-603	2.7	5	
56	Impact of Fullerene Intercalation on Structural and Thermal Properties of Organic Photovoltaic Blends. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 20976-20985	3.8	5	
55	ZnO hybrid photovoltaics with variable side-chain lengths of thienothiophene polymer. <i>Thin Solid Films</i> , 2015 , 576, 38-41	2.2	5	
54	Organic Semiconductor Materials for Transistors 2012 , 1-26		5	
53	Electronic structure of a novel alkylidene fluorene polymer in the pristine state. <i>Chemical Physics Letters</i> , 2004 , 385, 184-188	2.5	5	
52	Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency <i>Energy and Environmental Science</i> , 2022 , 15, 1256-1270	35.4	5	
51	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4486-4495	7.1	5	

50	Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals. <i>Current Applied Physics</i> , 2012 , 12, e59-e66	2.6	4
49	New liquid crystalline solution processible organic semiconductors and their performance in field effect transistors 2003 ,		4
48	A Structurally Simple but High-Performing Donor Acceptor Polymer for Field-Effect Transistor Applications. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000490	6.4	4
47	Origin of Open-Circuit Voltage Turnover in Organic Solar Cells at Low Temperature. <i>Solar Rrl</i> , 2020 , 4, 2000375	7.1	4
46	Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 2150-2163	2.5	4
45	The influence of alkyl group regiochemistry and backbone fluorination on the packing and transistor performance of N-cyanoimine functionalised indacenodithiophenes. <i>Materials Advances</i> , 2021 , 2, 1706-1714	3.3	4
44	Functional group introduction and aromatic unit variation in a set of Econjugated macrocycles: revealing the central role of local and global aromaticity. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 4730-474	5 ^{5.2}	4
43	Template-Synthesis of Conjugated Poly(3-Hexylselenophene) (P3HS) Nanofibers Using Femtosecond Laser Machined Fused Silica Templates. <i>MRS Advances</i> , 2017 , 2, 2957-2960	0.7	3
42	Fast and Selective Post-polymerization Modification of Conjugated Polymers Using Dimethyldioxirane. <i>Frontiers in Chemistry</i> , 2019 , 7, 123	5	3
41	Novel soluble thieno[3,2-b]thiophene fused porphyrazine. <i>RSC Advances</i> , 2015 , 5, 90645-90650	3.7	3
40	Controlled integration of oligo- and polythiophenes at the molecular scale. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26525-9	3.6	3
39	Resolving Anomalous Heavy Atom Effects from Discrete Triplet Mediated Photochemistry Events on Single Conjugated Polymer Chains. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 9718-9725	3.8	3
38	Distinguishing between nonlinear channel transport and contact effects in organic FETs 2007,		3
37	Effects of semiconductor-dielectric interfaces on polymeric thin-film transistors 2005,		3
36	Stability in OTFT Gas Sensors. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		3
35	Double Ring-Closing Approach for the Synthesis of 2,3,6,7-Substituted Anthracene Derivatives. Journal of Organic Chemistry, 2020 , 85, 8240-8244	4.2	3
34	Tunable Control of the Hydrophilicity and Wettability of Conjugated Polymers by a Postpolymerization Modification Approach. <i>Macromolecular Bioscience</i> , 2020 , 20, e2000087	5.5	3
33	Highly Deformed o-Carborane Functionalised Non-linear Polycyclic Aromatics with Exceptionally Long C-C Bonds. <i>Chemistry - A European Journal</i> , 2021 , 27, 1970-1975	4.8	3

(2020-2021)

32	Design of experiment optimization of aligned polymer thermoelectrics doped by ion-exchange. <i>Applied Physics Letters</i> , 2021 , 119, 111903	3.4	3
31	Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring <i>Small</i> , 2022 , e2200580	11	3
30	Near-IR Absorbing Molecular Semiconductors Incorporating Cyanated Benzothiadiazole Acceptors for High-Performance Semitransparent n-Type Organic Field-Effect Transistors 2022 , 4, 165-174		3
29	Solar Cells: Domain Compositions and Fullerene Aggregation Govern Charge Photogeneration in Polymer/Fullerene Solar Cells (Adv. Energy Mater. 11/2014). <i>Advanced Energy Materials</i> , 2014 , 4, n/a-n/a	21.8	2
28	Stable semiconducting thiophene polymers and their field effect transistor characteristics 2005,		2
27	N-type polymer semiconductors incorporating para, meta, and ortho-carborane in the conjugated backbone. <i>Polymer</i> , 2022 , 240, 124481	3.9	2
26	Using the Stark effect to understand charge generation in organic solar cells 2015,		1
25	High-mobility ambipolar polymer transistors: properties and function 2012,		1
24	Thienothiophene Copolymers in Field Effect Transistors647-672		1
23	The Impact of the Dielectric/Semiconductor Interface on Microstructure and Charge Carrier Transport in High-Performance Polythiophene Transistors. <i>ECS Transactions</i> , 2008 , 13, 113-122	1	1
22	Self-assembled liquid crystalline solution processable semiconductors 2004,		1
21	14GHz Schottky Diodes using a p-Doped Organic Polymer Advanced Materials, 2022 , e2108524	24	1
20	Development of Polymer Semiconductors for Field-Effect Transistor Devices in Displays 2009 , 393-429		1
19	Flow Synthesis: A Better Way to Conjugated Polymers? 2019 , 613-652		1
18	The synthesis and application of novel benzodithiophene based reactive mesogens with negative wavelength dispersion birefringence. <i>Journal of Materials Chemistry C</i> ,	7.1	1
17	High Current-density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. <i>Advanced Materials</i> , 2021 , e2107355	24	1
16	New Liquid Crystalline Semiconductors And Their Fabrication in Organic Field Effect Transistor Devices. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 771, 831		1
15	Functional 4H-Dithieno[3,2-b:2?,3?-d]pyrrole Derivatives in Base-Dopable Conjugated Polymers and Oligomers. <i>Macromolecules</i> , 2020 , 53, 6649-6655	5.5	1

14	Multibranched aliphatic side chains for Econjugated polymers with a high density of @nshieldedO aromatics. <i>Chemical Communications</i> , 2020 , 56, 12138-12141	5.8	1
13	Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4597-4606	7.1	1
12	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated DonorAcceptor Conjugated Polymers. <i>Angewandte Chemie</i> , 2021 , 133, 19831-19836	3.6	1
11	Reconciling the Driving Force and the Barrier to Charge Separation in DonorNonfullerene Acceptor Films. <i>ACS Energy Letters</i> ,3572-3581	20.1	1
10	[2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p-phenylene vinylene)s (PPVs). <i>Open Research Europe</i> ,1, 111		1
9	Triplet Generation Dynamics in Si- and Ge-Bridged Conjugated Copolymers. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 1036-1045	3.8	O
8	One-Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Air-Stable High-Performance n-Type Organic Field-Effect Transistors. <i>Angewandte Chemie</i> , 2021 , 133, 6035-6042	3.6	0
7	Transition-Metal-Free Homopolymerization of Pyrrolo[2,3-:5,4-\$\psi\$bisthiazoles via Nucleophilic Aromatic Substitution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 41094-41101	9.5	O
6	[2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p-phenylene vinylene)s (PPVs). <i>Open Research Europe</i> ,1, 111		0
5	Vinylene Flanked Naphtho[1,2-c:5,6-c?]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. <i>Macromolecules</i> , 2022 , 55, 331-337	5.5	O
4	The Synthesis of Conjugated Polythiophenes by Kumada Cross-Coupling 2012 , 155-198		
3	Reliable Suzuki Chemistry for Functionalised Polythiophene Synthesis. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1003, 1		
2	Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships. <i>Kluwer International Series in Electronic Materials: Science and Technology</i> , 2009 , 261-296		
1	Charge transport and recombination in wide-bandgap Y6 derivatives-based organic solar cells. <i>Advances in Natural Sciences: Nanoscience and Nanotechnology</i> , 2022 , 13, 025001	1.6	