
Irmak Karaduman Er

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of H2S gas sensing performance of Ni:WO3 films at room temperature: nickel precursor effect. Journal of Materials Science: Materials in Electronics, 2022, 33, 3397-3410.	2.2	4
2	The structural, morphological, optical and gas-sensing properties of Mn3O4 thin films grown by successive ionic layer adsorption and reaction technique. Journal of Materials Science: Materials in Electronics, 2022, 33, 14519-14534.	2.2	7
3	Structural, morphological and gas sensing properties of Zn1â^'xSnxO thin films by SILAR method. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	11
4	The Dependence of the Gas Sensing Properties of ZnO Thin Films on the Zinc Concentration. Journal of Materials Science: Materials in Electronics, 2021, 32, 8122-8135.	2.2	10
5	Complex electrical impedance and modulus characterizations of ZnO:Sn thin films in a wide temperature range. Journal of Materials Science: Materials in Electronics, 2021, 32, 13594-13609.	2.2	10
6	Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	21
7	Development of ZnO sensors via succession ionic layer adsorption and reaction (SILAR) method for ppb level NO gas sensing. Research on Engineering Structures and Materials, 2021, , .	0.4	2
8	Synthesis of Al/HfO2/p-Si Schottky diodes and the investigation of their electrical and dielectric properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 1677-1690.	2.2	9
9	Substrate critical effect on the structural and H ₂ Gas sensing characteristics of solution-processed Zn _{0.075} Cu _{0.025} O films. Materials Research Express, 2021, 8, 126401.	1.6	3
10	The role of rare-earth metal (Y, Ru and Cs)-doped ZnO thin films in NH3 gas sensing performances at room temperature. Journal of Materials Science: Materials in Electronics, 2020, 31, 10084-10095.	2.2	18
11	The effect of deposition time on the structural, morphological and H2S gas sensing properties of the V2O5 nanostructures deposited by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2019, 30, 12215-12223.	2.2	8
12	Low-level NO gas sensing properties of \$\$hbox {Zn}_{1-x}hbox {Sn}_{x}hbox {O}\$\$ Zn 1 - x Sn x. Bulletin of Materials Science, 2019, 42, 1.	1.7	15
13	Enhancing the Co gas sensing properties of ZnO thin films with the decoration of MWCNTs. Journal of Materials Science: Materials in Electronics, 2019, 30, 259-265.	2.2	14
14	Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. Journal of Alloys and Compounds, 2017, 722, 569-578.	5.5	138