Sangeeta R Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993449/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Improved ²¹¹ At-Labeled Agent for PSMA-Targeted α-Therapy. Journal of Nuclear Medicine, 2022, 63, 259-267.	2.8	28
2	A Series of PSMA-Targeted Near-Infrared Fluorescent Imaging Agents. Biomolecules, 2022, 12, 405.	1.8	1
3	Preclinical evaluation of ²¹³ Bi-/ ²²⁵ Ac-labeled low-molecular-weight compounds for radiopharmaceutical therapy of prostate cancer. Journal of Nuclear Medicine, 2021, 62, jnumed.120.256388.	2.8	17
4	Dual contrast agents for fluorescence and photoacoustic imaging: evaluation in a murine model of prostate cancer. Nanoscale, 2021, 13, 9217-9228.	2.8	19
5	Prostate-specific membrane antigen (PSMA)-targeted photodynamic therapy enhances the delivery of PSMA-targeted magnetic nanoparticles to PSMA-expressing prostate tumors. Nanotheranostics, 2021, 5, 182-196.	2.7	12
6	A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Scientific Reports, 2021, 11, 7114.	1.6	20
7	Preclinical Evaluation of ^{203/212} Pb-Labeled Low-Molecular-Weight Compounds for Targeted Radiopharmaceutical Therapy of Prostate Cancer. Journal of Nuclear Medicine, 2020, 61, 80-88.	2.8	59
8	Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer. Theranostics, 2020, 10, 2888-2896.	4.6	28
9	177Lu-labeled low-molecular-weight agents for PSMA-targeted radiopharmaceutical therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2545-2557.	3.3	40
10	Evaluation of PSMA-Targeted PAMAM Dendrimer Nanoparticles in a Murine Model of Prostate Cancer. Molecular Pharmaceutics, 2019, 16, 2590-2604.	2.3	29
11	MRI Assessment of Prostate-Specific Membrane Antigen (PSMA) Targeting by a PSMA-Targeted Magnetic Nanoparticle: Potential for Image-Guided Therapy. Molecular Pharmaceutics, 2019, 16, 2060-2068.	2.3	15
12	Evaluation of ¹¹¹ In-DOTA-5D3, a Surrogate SPECT Imaging Agent for Radioimmunotherapy of Prostate-Specific Membrane Antigen. Journal of Nuclear Medicine, 2019, 60, 400-406.	2.8	19
13	Salicylic Acidâ€Based Polymeric Contrast Agents for Molecular Magnetic Resonance Imaging of Prostate Cancer. Chemistry - A European Journal, 2018, 24, 7235-7242.	1.7	11
14	A hyaluronic acid binding peptide-polymer system for treating osteoarthritis. Biomaterials, 2018, 183, 93-101.	5.7	69
15	¹¹¹ In- and IRDye800CW-Labeled PLA–PEG Nanoparticle for Imaging Prostate-Specific Membrane Antigen-Expressing Tissues. Biomacromolecules, 2017, 18, 201-209.	2.6	43
16	A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1, 977-982.	11.6	58
17	Developing imidazoles as CEST MRI pH sensors. Contrast Media and Molecular Imaging, 2016, 11, 304-312.	0.4	47
18	Preclinical Comparative Study of ⁶⁸ Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA. Bioconjugate Chemistry, 2016, 27, 1447-1455.	1.8	54

SANGEETA R BANERJEE

#	Article	IF	CITATIONS
19	Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer. Chemical Science, 2016, 7, 6779-6785.	3.7	42
20	PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer. Biomaterials, 2016, 80, 57-67.	5.7	36
21	Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Molecular Cancer Therapeutics, 2016, 15, 106-113.	1.9	27
22	Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer. Cancer Research, 2016, 76, 472-479.	0.4	140
23	[64Cu]XYIMSR-06: A dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma. Oncotarget, 2016, 7, 56471-56479.	0.8	49
24	Synthesis and Evaluation of Gd ^{III} â€Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostateâ€5pecific Membrane Antigen. Angewandte Chemie - International Edition, 2015, 54, 10778-10782.	7.2	57
25	Anthranilic acid analogs as diamagnetic CEST MRI contrast agents that feature an intramolecularâ€bond shifted hydrogen. Contrast Media and Molecular Imaging, 2015, 10, 74-80.	0.4	28
26	Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale, 2015, 7, 4432-4442.	2.8	35
27	Design and assembly of supramolecular dual-modality nanoprobes. Nanoscale, 2015, 7, 9462-9466.	2.8	16
28	Preclinical Evaluation of 86Y-Labeled Inhibitors of Prostate-Specific Membrane Antigen for Dosimetry Estimates. Journal of Nuclear Medicine, 2015, 56, 628-634.	2.8	35
29	Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor. Oncotarget, 2015, 6, 33733-33742.	0.8	44
30	Tuning Phenols with Intraâ€Molecular Bond Shifted HYdrogens (IMâ€6HY) as diaCEST MRI Contrast Agents. Chemistry - A European Journal, 2014, 20, 15824-15832.	1.7	43
31	⁶⁴ Cu-Labeled Inhibitors of Prostate-Specific Membrane Antigen for PET Imaging of Prostate Cancer. Journal of Medicinal Chemistry, 2014, 57, 2657-2669.	2.9	103
32	PSMA-Targeted Low Molecular Weight Urea-siRNA Conjugates for Targeted Knockdown of DNA-PK and Radiosensitization of Prostate Cancer Cell Lines. International Journal of Radiation Oncology Biology Physics, 2014, 90, S798-S799.	0.4	0
33	Heterobivalent Agents Targeting PSMA and Integrin-α _v β ₃ . Bioconjugate Chemistry, 2014, 25, 393-405.	1.8	38
34	Clinical applications of Gallium-68. Applied Radiation and Isotopes, 2013, 76, 2-13.	0.7	194
35	Effect of Chelators on the Pharmacokinetics of ^{99m} Tc-Labeled Imaging Agents for the Prostate-Specific Membrane Antigen (PSMA). Journal of Medicinal Chemistry, 2013, 56, 6108-6121. 	2.9	57
36	Salicylic Acid and Analogues as diaCEST MRI Contrast Agents with Highly Shifted Exchangeable Proton Frequencies. Angewandte Chemie - International Edition, 2013, 52, 8116-8119.	7.2	73

SANGEETA R BANERJEE

#	Article	IF	CITATIONS
37	Synthesis and Biological Evaluation of Low Molecular Weight Fluorescent Imaging Agents for the Prostate-Specific Membrane Antigen. Bioconjugate Chemistry, 2012, 23, 2377-2385.	1.8	84
38	PSMA-Targeted Theranostic Nanoplex for Prostate Cancer Therapy. ACS Nano, 2012, 6, 7752-7762.	7.3	95
39	A Modular Strategy to Prepare Multivalent Inhibitors of Prostate-Specific Membrane Antigen (PSMA). Oncotarget, 2011, 2, 1244-1253.	0.8	53
40	Sequential SPECT and Optical Imaging of Experimental Models of Prostate Cancer with a Dual Modality Inhibitor of the Prostate‧pecific Membrane Antigen. Angewandte Chemie - International Edition, 2011, 50, 9167-9170.	7.2	106
41	Probing In Vivo Trafficking of Polymer/DNA Micellar Nanoparticles Using SPECT/CT Imaging. Molecular Therapy, 2011, 19, 1626-1635.	3.7	42
42	⁶⁸ Ga-Labeled Inhibitors of Prostate-Specific Membrane Antigen (PSMA) for Imaging Prostate Cancer. Journal of Medicinal Chemistry, 2010, 53, 5333-5341.	2.9	196
43	Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as targeted imaging agents for prostate cancer. Bioorganic and Medicinal Chemistry, 2009, 17, 4888-4893.	1.4	31
44	Comprehensive Radiolabeling, Stability, and Tissue Distribution Studies of Technetium-99m Single Amino Acid Chelates (SAAC). Bioconjugate Chemistry, 2009, 20, 1625-1633.	1.8	43
45	A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochemical and Biophysical Research Communications, 2009, 390, 624-629.	1.0	124
46	Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA). Journal of Medicinal Chemistry, 2008, 51, 4504-4517.	2.9	223
47	Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. Journal of Medicinal Chemistry, 2008, 51, 7737-7743.	2.9	138
48	Characterization of a targeted nanoparticle functionalized with a urea-based inhibitor of prostate-specific membrane antigen (PSMA). Cancer Biology and Therapy, 2008, 7, 974-982.	1.5	70
49	A new bifunctional amino acid chelator targeting the glucose transporter. Inorganica Chimica Acta, 2006, 359, 1603-1612.	1.2	28
50	Design and synthesis of site directed maleimide bifunctional chelators for technetium and rhenium. Dalton Transactions, 2005, , 3886.	1.6	40
51	A new tricarbonylrhenium(I) compound incorporating the tridentate ligandN,N-bispicolyl-2-ethanolamine. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m275-m277.	0.4	4
52	A New Strategy for the Preparation of Peptide-Targeted Technetium and Rhenium Radiopharmaceuticals. The Automated Solid-Phase Synthesis, Characterization, Labeling, and Screening of a Peptide-Ligand Library Targeted at the Formyl Peptide Receptor. Bioconjugate Chemistry, 2005, 16, 1189-1195.	1.8	23
53	A convenient solid-phase synthesis methodology for preparing peptide-derived molecular imaging agents — Synthesis, characterization, and in vitro screening of Tc(I) – chemotactic peptide conjugates. Canadian Journal of Chemistry, 2005, 83, 2060-2066.	0.6	10
54	Site directed maleimide bifunctional chelators for the M(CO)3+ core (M =99mTc, Re). Chemical Communications, 2005, , 1784.	2.2	34

SANGEETA R BANERJEE

#	Article	IF	CITATIONS
55	New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nuclear Medicine and Biology, 2005, 32, 1-20.	0.3	183
56	N,N-Bis(2-mercaptoethyl)methylamine:  A New Coligand for Tc-99m Labeling of Hydrazinonicotinamide Peptides. Bioconjugate Chemistry, 2005, 16, 885-902.	1.8	18
57	Direct Reductive Alkylation of Amino Acids: Synthesis of Bifunctional Chelates for Nuclear Imaging. Synthesis, 2004, 2004, 1759-1766.	1.2	7
58	A metal-mediated dimerization of the ligand bis(N,N-diethylamino)carbeniumdithiocarboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m208-m209.	0.4	4
59	Complexes of the fac-{Re(CO)3}+ core with tridentate ligands derived from arylpiperazines. Inorganica Chimica Acta, 2004, 357, 1499-1516.	1.2	47
60	Bifunctional chelates with aliphatic amine donors for labeling of biomolecules with the {Tc(CO) 3 } + and {Re(CO) 3 } + cores: the crystal and molecular structure of [Re(CO) 3 {(H 2 NCH 2 CH 2) 2 N(CH 2) 4 CO 2 Me}]Br. Inorganic Chemistry Communication, 2004, 7, 481-484.	1.8	21
61	Bridging the Gap between in Vitro and in Vivo Imaging:Â Isostructural Re and99mTc Complexes for Correlating Fluorescence and Radioimaging Studies. Journal of the American Chemical Society, 2004, 126, 8598-8599.	6.6	200
62	A New Strategy for the Preparation of Peptide-Targeted Radiopharmaceuticals Based on an Fmoc-Lysine-Derived Single Amino Acid Chelate (SAAC). Automated Solid-Phase Synthesis, NMR Characterization, and in Vitro Screening of fMLF(SAAC)G and fMLF[(SAACâ^'Re(CO)3)+]G. Bioconjugate Chemistry, 2004, 15, 128-136	1.8	112
63	Rhenium tricarbonyl core complexes with ligands derived from arylpiperazines. The structures of [Re(CO)3{NC5H4CH2N(H)CH2CH2–Fphenpip}]Br, [Re(CO)3{(NC5H4CH2)2N(CH2)3–CH3OphenpipH}]Br2 [Re(CO)3{(CH3N2C3H2CH2)(O2CCH2)N(CH2)3–CH3OphenpipH2}]BrCl. Inorganic Chemistry Communication, 2003, 6, 1099-1103.	and 1.8	17
64	{RelIICl3} Core Complexes with Bifunctional Single Amino Acid Chelates. Inorganic Chemistry, 2002, 41, 5795-5802.	1.9	18
65	{Re(CO)3}+Cores. Crystal and Molecular Structures of [ReBr(CO)3(H2NCH2C5H4N)], [Re(CO)3{(C5H4NCH2)2NH}]Br, [Re(CO)3{(C5H4NCH2)2NCH2CO2H}]Br, [Re(CO)3{X(Y)NCH2CO2CH2CH3}]Br (X = Y = 2-pyridylmethyl; X = 2-pyridylmethyl, Y =) Tj ETQq1 1 0.784314 rg	;B ^{†•} /Overl	ock 171 ock 10 Tf 5(
66	Rhenium(I) carbonyl complexes of bis(N,N-diethylamino)carbeniumdithiocarboxylate, a novel [CO2]]. Inorganic inner-salt type sulfur donor ligand. Spectroscopic and structural studies. Inorganica Chimica Acta, 2002, 340, 155-162.	1.2	16
67	Chemistry of the Rheniumâ^'Azopyridine Family:Â An Oxo Parent and Derivatives Thereof Including a Novel Oxoâ^'Imido Dimer. Inorganic Chemistry, 2000, 39, 6-13.	1.9	51
68	Variable-Valent Reâ‹®NAr Species. A Family of ReVINAr Amide Complexes and Their ReVNAr Imine Precursors Related by Oxygen Atom Transfer. Inorganic Chemistry, 1997, 36, 3595-3601.	1.9	26