Wahyu Wijaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993343/publications.pdf

Version: 2024-02-01

Αλληνιι Αλιιανα

#	Article	IF	CITATIONS
1	Fabrication and characterization of zein nanofibers integrated with gold nanospheres. LWT - Food Science and Technology, 2022, 155, 112976.	5.2	13
2	Tunable mixed micellization of β-casein in the presence of κ-casein. Food Hydrocolloids, 2021, 113, 106459.	10.7	7
3	Interaction between added whey protein ingredients and native milk components in non-fat acidified model systems. International Dairy Journal, 2021, 115, 104946.	3.0	8
4	Improving <i>in vitro</i> bioaccessibility and bioactivity of carnosic acid using a lecithin-based nanoemulsion system. Food and Function, 2021, 12, 1558-1568.	4.6	11
5	Crystallization of polymethoxyflavones in high internal phase emulsions stabilized using biopolymeric complexes: Implications for microstructure and in vitro digestion properties. Food Bioscience, 2021, 40, 100876.	4.4	3
6	Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: A dynamic digestion study via TNO's gastrointestinal model. Current Research in Food Science, 2020, 2, 11-19.	5.8	25
7	Norbixin binding to whey protein isolate - alginate electrostatic complexes increases its solubility and stability. Food Hydrocolloids, 2020, 101, 105559.	10.7	14
8	Improving the bioaccessibility and bioavailability of carnosic acid using a lecithin-based nanoemulsion: complementary <i>in vitro</i> and <i>in vivo</i> studies. Food and Function, 2020, 11, 8141-8149.	4.6	14
9	Effect of low-methoxy pectin on interfacial and emulsion stabilizing properties of heated whey protein isolate (WPI) aggregates. Food Structure, 2020, 26, 100159.	4.5	13
10	Whey protein-polysaccharide conjugates obtained via dry heat treatment to improve the heat stability of whey protein stabilized emulsions. Trends in Food Science and Technology, 2020, 98, 150-161.	15.1	84
11	Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles. Food and Function, 2020, 11, 1478-1488.	4.6	30
12	Whey protein isolate–low methoxyl pectin nanocomplexes improve physicochemical and stability properties of quercetin in a model fat-free beverage. Food and Function, 2019, 10, 986-996.	4.6	25
13	pH and protein to polysaccharide ratio control the structural properties and viscoelastic network of HIPE-templated biopolymeric oleogels. Food Structure, 2019, 21, 100112.	4.5	60
14	High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil. Food and Function, 2018, 9, 1993-1997.	4.6	24
15	Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength. Food Hydrocolloids, 2017, 63, 716-726.	10.7	69
16	Functional colloids from proteins and polysaccharides for food applications. Trends in Food Science and Technology, 2017, 68, 56-69.	15.1	186
17	Cold-set gelation of whey protein isolate and low-methoxyl pectin at low pH. Food Hydrocolloids, 2017, 65, 35-45.	10.7	56
18	High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: effect of pH and polymer concentration. Food and Function, 2017, 8, 584-594.	4.6	147

#	Article	IF	CITATIONS
19	CHAPTER 9. Oleogels from Emulsion (HIPE) Templates Stabilized by Protein–Polysaccharide Complexes. Food Chemistry, Function and Analysis, 2017, , 175-197.	0.2	4
20	Food-grade particles for emulsion stabilization. Trends in Food Science and Technology, 2016, 50, 159-174.	15.1	288
21	General Properties of Major Food Components. , 2015, , 15-54.		6
22	General Properties of Minor Food Components. , 2015, , 55-74.		1