Di Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899323/publications.pdf

Version: 2024-02-01

		126907	144013
152	4,201	33	57
papers	citations	h-index	g-index
156	156	156	6081
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular Engineering of Mechanochromic Materials by Programmed C–H Arylation: Making a Counterpoint in the Chromism Trend. Journal of the American Chemical Society, 2016, 138, 12803-12812.	13.7	195
2	Unparalleled Ease of Access to a Library of Biheteroaryl Fluorophores via Oxidative Cross-Coupling Reactions: Discovery of Photostable NIR Probe for Mitochondria. Journal of the American Chemical Society, 2016, 138, 4730-4738.	13.7	181
3	Ferroelectric Tunnel Junctions: Modulations on the Potential Barrier. Advanced Materials, 2020, 32, e1904123.	21.0	179
4	Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nature Communications, 2017, 8, 15217.	12.8	165
5	Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nature Communications, 2021, 12, 3508.	12.8	153
6	Direct Calorimetric Measurement of Enthalpy of Adsorption of Carbon Dioxide on CD-MOF-2, a Green Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 6790-6793.	13.7	140
7	Rhodium(III)â€Catalyzed <i>ortho</i> â€Heteroarylation of Phenols through Internal Oxidative CH Activation: Rapid Screening of Singleâ€Molecular Whiteâ€Lightâ€Emitting Materials. Angewandte Chemie - International Edition, 2015, 54, 14008-14012.	13.8	133
8	Rhodium(III)â€Catalyzed <i>ortho</i> CH Heteroarylation of (Hetero)aromatic Carboxylic Acids: A Rapid and Concise Access to Ï€â€Conjugated Polyâ€heterocycles. Angewandte Chemie - International Edition, 2015, 54, 7167-7170.	13.8	122
9	Imaging quantum spin Hall edges in monolayer WTe ₂ . Science Advances, 2019, 5, eaat8799.	10.3	113
10	Regioselective Decarboxylative Direct C–H Arylation of Boron Dipyrromethenes (BODIPYs) at 2,6-Positions: A Facile Access to a Diversity-Oriented BODIPY Library. Organic Letters, 2014, 16, 6080-6083.	4.6	80
11	Coexistence of Magnetic Orders in Two-Dimensional Magnet Crl ₃ . Nano Letters, 2020, 20, 553-558.	9.1	74
12	Unexpected Sole Enolâ€Form Emission of 2â€(2′â€Hydroxyphenyl)oxazoles for Highly Efficient Deepâ€Blueâ€Emitting Organic Electroluminescent Devices. Advanced Functional Materials, 2017, 27, 1605245.	14.9	72
13	Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films. Applied Physics Letters, 2006, 88, 082111.	3.3	71
14	Synthesis of Phenalenylâ€Fused Pyrylium Cations: Divergent Câ^'H Activation/Annulation Reaction Sequence of Naphthalene Aldehydes with Alkynes. Angewandte Chemie - International Edition, 2017, 56, 13094-13098.	13.8	71
15	Synthesis of Pyrido[1,2â€ <i>a</i>]benzimidazoles through a Copper atalyzed Cascade C–N Coupling Process. European Journal of Organic Chemistry, 2011, 2011, 5242-5245.	2.4	60
16	Porphyrins with intense absorptivity: highly efficient sensitizers with a photovoltaic efficiency of up to 10.7% without a cosensitizer and a coabsorbate. Journal of Materials Chemistry A, 2016, 4, 11829-11834.	10.3	56
17	Above-room-temperature molecular ferroelectric and fast switchable dielectric of diisopropylammonium perchlorate. Journal of Materials Chemistry C, 2014, 2, 9957-9963.	5.5	53
18	Tailoring Mesoporous Î ³ -Al ₂ O ₃ Properties by Transition Metal Doping: A Combined Experimental and Computational Study. Chemistry of Materials, 2017, 29, 1338-1349.	6.7	52

#	Article	IF	Citations
19	Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks. Microporous and Mesoporous Materials, 2019, 284, 151-160.	4.4	51
20	Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy, 2017, 40, 327-335.	16.0	49
21	Guest–host interactions of a rigid organic molecule in porous silica frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1720-1725.	7.1	45
22	Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27831-27837.	8.0	45
23	U(<scp>v</scp>) in metal uranates: a combined experimental and theoretical study of MgUO ₄ , CrUO ₄ , and FeUO ₄ . Dalton Transactions, 2016, 45, 4622-4632.	3.3	45
24	Thermodynamics of metal-organic frameworks. Journal of Solid State Chemistry, 2015, 223, 53-58.	2.9	44
25	Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4. Journal of Nuclear Materials, 2016, 478, 158-163.	2.7	41
26	Magnetic interactions in BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices. Scientific Reports, 2015, 5, 9093.	3.3	40
27	Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method. Journal of Materials Research, 2014, 29, 2325-2331.	2.6	39
28	Densification and grain growth of Gd2Zr2O7 nanoceramics during pressureless sintering. Journal of the European Ceramic Society, 2017, 37, 1059-1065.	5.7	39
29	Inhibition of AlF ₃ ·3H ₂ O Impurity Formation in Ti ₃ C ₂ T _{<i>x</i>} MXene Synthesis under a Unique CoF _{<i>x</i>} /HCl Etching Environment. ACS Applied Energy Materials, 2019, 2, 8145-8152.	5.1	39
30	Tuning Ni/Al Ratio to Enhance Pseudocapacitive Charge Storage Properties of Nickel–Aluminum Layered Double Hydroxide. Advanced Electronic Materials, 2019, 5, 1900215.	5.1	39
31	Calculation of nuclear charge radii with a trained feed-forward neural network. Physical Review C, 2020, 102, .	2.9	39
32	Pd-Catalyzed Direct C–H Functionalization/Annulation of BODIPYs with Alkynes to Access Unsymmetrical Benzo[<i>b</i>)-Fused BODIPYs: Discovery of Lysosome-Targeted Turn-On Fluorescent Probes. Journal of Organic Chemistry, 2018, 83, 9538-9546.	3.2	38
33	Spin-Filtering Ferroelectric Tunnel Junctions as Multiferroic Synapses for Neuromorphic Computing. ACS Applied Materials & Diterfaces, 2020, 12, 56300-56309.	8.0	37
34	Small molecule – Silica interactions in porous silica structures. Geochimica Et Cosmochimica Acta, 2013, 109, 38-50.	3.9	35
35	Metal-Modified Cu-BTC Acid for Highly Enhanced Adsorption of Organosulfur Species. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 9541-9550.	3.7	33
36	Energy Landscape of Water and Ethanol on Silica Surfaces. Journal of Physical Chemistry C, 2015, 119, 15428-15433.	3.1	32

#	Article	IF	Citations
37	Structure and energetics of <scp>SiOC</scp> and <scp>SiOC</scp> â€modified carbonâ€bonded carbon fiber composites. Journal of the American Ceramic Society, 2017, 100, 3693-3702.	3.8	32
38	A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 3333-3343.	10.3	32
39	Iridium(III)â€Catalyzed Diarylation/Annulation of Benzoic Acids: Facile Access to Multiâ€Aryl Spirobifluorenes as Pure Hydrocarbon Hosts for Highâ€Performance OLEDs. Angewandte Chemie - International Edition, 2021, 60, 18852-18859.	13.8	32
40	Energetics of a Uranothorite (Th _{1–<i>x</i>} U _{<i>x</i>} SiO ₄) Solid Solution. Chemistry of Materials, 2016, 28, 7117-7124.	6.7	31
41	Calorimetric Study of Alkali Metal Ion (K ⁺ , Na ⁺ , Li ⁺) Exchange in a Clay-Like MXene. Journal of Physical Chemistry C, 2017, 121, 15145-15153.	3.1	31
42	Thermodynamic complexity of sulfated zirconia catalysts. Journal of Catalysis, 2016, 342, 158-163.	6.2	30
43	Thermodynamics of solvent interaction with the metal–organic framework MOF-5. Physical Chemistry Chemical Physics, 2016, 18, 1158-1162.	2.8	30
44	Comparison of chemical stability and corrosion resistance of group IV metal oxide films formed by thermal and plasma-enhanced atomic layer deposition. Scientific Reports, 2019, 9, 10438.	3.3	30
45	Energy landscape of self-assembled superlattices of PbSe nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9054-9057.	7.1	29
46	Energetics of Alkali and Alkaline Earth Ion-Exchanged Zeolite A. Journal of Physical Chemistry C, 2016, 120, 15251-15256.	3.1	29
47	Planetary ballâ€milling of AlON powder for highly transparent ceramics. Journal of the American Ceramic Society, 2019, 102, 2377-2389.	3.8	29
48	The effects of precipitants on co-precipitation synthesis of yttria-stabilized zirconia nanocrystalline powders. Journal of Sol-Gel Science and Technology, 2019, 90, 359-368.	2.4	29
49	Preparation of (1â^'x%)(Na0.5Bi0.5)TiO3â€"x%SrTiO3 thin films by a solâ€"gel method for dielectric tunable applications. Journal of Sol-Gel Science and Technology, 2009, 49, 29-34.	2.4	28
50	Catalytic Alkynylation Coupling Reactions by Copper(II) Complex in Water and Its Applications to Domino Synthesis of 2â€Arylindoles. European Journal of Organic Chemistry, 2010, 2010, 5560-5562.	2.4	28
51	Thermodynamic Stability of Lowâ€ <i>k</i> Amorphous SiOCH Dielectric Films. Journal of the American Ceramic Society, 2016, 99, 2752-2759.	3.8	28
52	Dualâ€Design of Nanoporous to Compact Interface via Atomic/Molecular Layer Deposition Enabling a Longâ€Life Silicon Anode. Advanced Functional Materials, 2022, 32, 2109682.	14.9	26
53	Oxidative C–H/C–H Cross-Coupling of [1,2,4]Triazolo[1,5- <i>a</i>)]pyrimidines with Indoles and Pyrroles: Discovering Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. Organic Letters, 2019, 21, 4058-4062.	4.6	25
54	Atomic-scale fatigue mechanism of ferroelectric tunnel junctions. Science Advances, 2021, 7, eabh2716.	10.3	25

#	Article	IF	CITATIONS
55	The growth mechanism and ferroelectric domains of diisopropylammonium bromide films synthesized via 12-crown-4 addition at room temperature. Physical Chemistry Chemical Physics, 2016, 18, 7626-7631.	2.8	24
56	Defectâ€fluorite Gd 2 Zr 2 O 7 ceramics under helium irradiation: Amorphization, cell volume expansion, and multiâ€stage bubble formation. Journal of the American Ceramic Society, 2019, 102, 4911-4918.	3.8	24
57	Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure. Journal of Physical Chemistry Letters, 2015, 6, 2439-2443.	4.6	23
58	Rapid Access to 2,2′â€Bithiazoleâ€Based Copolymers via Sequential Palladium atalyzed C–H/C–X and C–H/C–H Coupling Reactions. Macromolecular Rapid Communications, 2016, 37, 794-798.	3.9	23
59	High-Temperature Thermodynamics of Cerium Silicates, A-Ce ₂ Si ₂ O ₇ , and Ce _{4.67} (SiO ₄) ₃ O. ACS Earth and Space Chemistry, 2020, 4, 2129-2143.	2.7	23
60	Supported Al–Ti bimetallic catalysts for 1-decene oligomerization: Activity, stability and deactivation mechanism. Journal of Catalysis, 2016, 339, 84-92.	6.2	22
61	Small-angle Neutron Scattering (SANS) Characterization of Clay- and Carbonate-rich Shale at Elevated Pressures. Energy & Description of Clay- and Carbonate-rich Shale at Elevated Pressures.	5.1	22
62	Probing the energetics of organic–nanoparticle interactions of ethanol on calcite. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5314-5318.	7.1	21
63	Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability. ACS Applied Materials & Enhanced Loading and Stability.	8.0	21
64	Transient directing ligand- and solvent-controlled C–H/C–H cross-coupling/quaternization cyclization/dequaternization of benzaldehydes with thiophenes. Chemical Communications, 2019, 55, 7518-7521.	4.1	21
65	Oxidative Direct Arylation Polymerization Using Oxygen as the Sole Oxidant: Facile, Green Access to Bithiazoleâ€Based Polymers. ChemSusChem, 2016, 9, 2765-2768.	6.8	20
66	An unusual [4 + 2] fusion strategy to forge meso-N/O-heteroarene-fused (quinoidal) porphyrins with intense near-infrared Q-bands. Chemical Science, 2019, 10, 7274-7280.	7.4	20
67	He irradiationâ€induced lattice distortion and surface blistering of Gd ₂ Zr ₂ O ₇ defectâ€fluorite ceramics. Journal of the American Ceramic Society, 2020, 103, 3425-3435.	3.8	20
68	Preparation and Characterization of Relaxor Ferroelectric 0.65Pb(Mg _{1/3} Nb _{2/3})O ₃ â€"0.35PbTiO ₃ by a Polymerizable Complex Method. Journal of the American Ceramic Society, 2009, 92, 1256-1261.	3.8	19
69	Energetics of Confinement of <i>n</i> -Hexane in Ca–Na Ion Exchanged Zeolite A. Journal of Physical Chemistry C, 2014, 118, 25590-25596.	3.1	18
70	Probing the Energetics of Molecule–Material Interactions at Interfaces and in Nanopores. Journal of Physical Chemistry C, 2017, 121, 26141-26154.	3.1	18
71	Double <i>ortho</i> -C–H Activation/Annulation of Benzamides with Aryl Alkynes: A Route to Double-Helical Polycyclic Heteroaromatics. Journal of Organic Chemistry, 2019, 84, 15697-15705.	3.2	18
72	Thermodynamics of CeSiO ₄ : Implications for Actinide Orthosilicates. Inorganic Chemistry, 2020, 59, 13174-13183.	4.0	18

#	Article	IF	CITATIONS
73	Tailoring Stress and Ion-Transport Kinetics via a Molecular Layer Deposition-Induced Artificial Solid Electrolyte Interphase for Durable Silicon Composite Anodes. ACS Applied Materials & Interfaces, 2021, 13, 32520-32530.	8.0	16
74	The Polymerization Effect on Synthesis and Visible-Light Photocatalytic Properties of Low-Temperature Î ² -BiNbO4 Using Nb-Citrate Precursor. Nanoscale Research Letters, 2015, 10, 457.	5.7	15
75	Interplay of Confinement and Surface Energetics in the Interaction of Water with a Metal–Organic Framework. Journal of Physical Chemistry C, 2016, 120, 7562-7567.	3.1	14
76	Construction of 3,7-Dithienyl Phenothiazine-Based Organic Dyes via Multistep Direct C–H Arylation Reactions. Journal of Organic Chemistry, 2018, 83, 8114-8126.	3.2	14
77	Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process. Nanoscale Research Letters, 2018, 13, 47.	5.7	14
78	Manipulating Oxidation States of Copper within Cu-BTC Using Na ₂ S ₂ O ₃ as a New Strategy for Enhanced Adsorption of Sulfide. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 19503-19510.	3.7	14
79	4D Printing of a Fully Biobased Shape Memory Copolyester <i>via</i> a UV-Assisted FDM Strategy. ACS Sustainable Chemistry and Engineering, 2022, 10, 6304-6312.	6.7	14
80	Resistive switching in \$\$hbox {BiFeO}_3\$\$ BiFeO 3 -based heterostructures due to ferroelectric modulation on interface Schottky barriers. Journal of Materials Science: Materials in Electronics, 2014, 25, 3251-3256.	2.2	13
81	Electromechanical Response from LaAlO ₃ /SrTiO ₃ Heterostructures. ACS Applied Materials & Date: Applie	8.0	13
82	Tuning <i>n</i> -Alkane Adsorption on Mixed-Linker Zeolitic Imidazolate Framework-8-90 via Controllable Ligand Hybridization: Insight into the Confinement from an Energetics Perspective. Industrial & Description of Chemistry Research, 2019, 58, 13274-13283.	3.7	13
83	Contributions of optimized tensor interactions on the binding energies of nuclei. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	3.4	13
84	High pyroelectric performance due to ferroelectric–antiferroelectric transition near room temperature. Journal of Materials Chemistry C, 2020, 8, 7820-7827.	5 . 5	13
85	Elucidating the promoting role of Mo2C in methane activation using Ni-xMo2C/FAU to catalyze methane steam reforming. Applied Catalysis B: Environmental, 2022, 310, 121250.	20.2	13
86	Regioselective Synthesis of 2- and 3-Substituted Imidazo[1,2- <i>a</i>) pyridines. Journal of Chemical Research, 2012, 36, 687-690.	1.3	12
87	Oneâ€pot synthesis of binderless zeolite A spheres via <i>in situ</i> hydrothermal conversion of silica gel precursors. AICHE Journal, 2018, 64, 4027-4038.	3.6	12
88	Rapid preparation and uniformity control of B4C ceramic double-curvature shells: Aim to advance its applications as ICF capsules. Journal of Alloys and Compounds, 2018, 762, 67-72.	5 . 5	12
89	Ferroelasticâ€Domainâ€Assisted Mechanical Switching of Ferroelectric Domains in Pb(Zr,Ti)O ₃ Thin Films. Advanced Electronic Materials, 2020, 6, 2000300.	5.1	12
90	Strain Control of Phase Transition and Exchange Bias in Flexible Heusler Alloy Thin Films. ACS Applied Materials & Discrete Representation (1988) and Phase Transition and Exchange Bias in Flexible Heusler Alloy Thin Films. ACS Applied Materials & Discrete Representation (1988) and Phase Transition and Exchange Bias in Flexible Heusler Alloy Thin Films. ACS Applied Materials & Discrete Representation (1988) and Phase Transition and Exchange Bias in Flexible Heusler Alloy Thin Films. ACS Applied Materials & Discrete Representation (1988) and Phase Transition and Exchange Bias in Flexible Heusler Alloy Thin Films. ACS Applied Materials & Discrete Representation (1988) and Phase Transition (1988)	8.0	12

#	Article	IF	CITATIONS
91	Room temperature ferromagnetism in ZnO prepared by microemulsion. AIP Advances, 2011, 1, 032127.	1.3	11
92	Rapid preparation of dense Gd2Zr2O7 nano-grain ceramics by microwave sintering in air. Ceramics International, 2019, 45, 10930-10935.	4.8	11
93	Energetic Cost for Being "Redox-Site-Rich―in Pseudocapacitive Energy Storage with Nickel–Aluminum Layered Double Hydroxide Materials. Journal of Physical Chemistry Letters, 2020, 11, 3745-3753.	4.6	11
94	Band structure engineering of van der Waals heterostructures using ferroelectric clamped sandwich structures. Physical Review B, 2021, 103 , .	3.2	11
95	Tip-Induced In-Plane Ferroelectric Superstructure in Zigzag-Wrinkled BaTiO ₃ Thin Films. Nano Letters, 2022, 22, 2859-2866.	9.1	11
96	High-resolution characterization of multiferroic heterojunction using aberration-corrected scanning transmission electron microscopy. Applied Physics Letters, 2017, 110, .	3.3	10
97	Thermodynamic, Thermal, and Structural Stability of Bimetallic MIL-53 (Al _{1–<i>x</i>} Cr _{<i>x</i>}). Journal of Physical Chemistry C, 2021, 125, 14039-14047.	3.1	10
98	Unveiling the Interfacial and Structural Heterogeneity of Ti ₃ C ₂ T _{<i>x</i>> MXene Etched with CoF₂/HCl by Integrated <i>in Situ</i> Thermal Analysis. ACS Applied Materials & Therman Analysis & Therman}	8.0	10
99	Effects of Al ₂ O ₃ phase composition on AlON powder synthesis via aluminothermic reduction and nitridation. International Journal of Materials Research, 2014, 105, 409-412.	0.3	9
100	Energetics of hydration on uranium oxide and peroxide surfaces. Journal of Materials Research, 2019, 34, 3319-3325.	2.6	9
101	Pd(II)-Catalyzed Regioselective Multiple C–H Arylations of 1-Naphthamides with Cyclic Diaryliodonium Salts: One-Step Access to [4]- and [5]Carbohelicenes. Organic Letters, 2020, 22, 135-139.	4.6	9
102	Titanicone-derived TiO ₂ quantum dot@carbon encapsulated ZnO nanorod anodes for stable lithium storage. Dalton Transactions, 2020, 49, 10866-10873.	3.3	9
103	Synthesis of Imidazole-Based [30]Heptaphyrin and Stable Figure-Eight [60]Tetradecaphyrins via [5 + 2] Condensations in One Pot. Organic Letters, 2021, 23, 3746-3750.	4.6	9
104	Energetics, Interlayer Molecular Structures, and Hydration Mechanisms of Dimethyl Sulfoxide (DMSO)–Kaolinite Nanoclay Guest–Host Interactions. Journal of Physical Chemistry Letters, 2021, 12, 9973-9981.	4.6	9
105	Bromide anion-triggered visible responsive metallogels based on squaramide complexes. Inorganic Chemistry Frontiers, 2016, 3, 1597-1603.	6.0	8
106	Hydration Energetics of a Diamine-Appended Metal–Organic Framework Carbon Capture Sorbent. Journal of Physical Chemistry C, 2020, 124, 398-403.	3.1	8
107	<i>In Situ</i> Hydrothermal Conversion of Silica Gel Precursors to Binderless Zeolite X Pellets for Enhanced Olefin Adsorption. Industrial & Enhanced Olefin Adsorption. Industrial & Enhanced Olefin Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 9997-10009.	3.7	8
108	Thermodynamics of Water–Cationic Species–Framework Guest–Host Interactions within Transition Metal Ion-Exchanged Mordenite Relevant to Selective Anaerobic Oxidation of Methane to Methanol. Journal of Physical Chemistry Letters, 2020, 11, 4774-4784.	4.6	8

#	Article	IF	CITATIONS
109	Copper-catalyzed remote C–H arylation of polycyclic aromatic hydrocarbons (PAHs). Beilstein Journal of Organic Chemistry, 2020, 16, 530-536.	2.2	8
110	Structure–Property–Energetics Relationship of Organosulfide Capture Using Cu(I)/Cu(II)-BTC Edited by Valence Engineering. Industrial & Engineering Chemistry Research, 2021, 60, 371-377.	3.7	8
111	Machine-learning-guided reaction kinetics prediction towards solvent identification for chemical absorption of carbonyl sulfide. Chemical Engineering Journal, 2022, 444, 136662.	12.7	8
112	Tuning the Catalytic Activity and Stability of Al–Ti Bimetallic Species Immobilized on MgO–Al2O3–SiO2 for 1-Decene Oligomerization. Industrial & Engineering Chemistry Research, 2018, 57, 6664-6672.	3.7	7
113	Surface morphology and microstructure evolution of B4C ceramic hollow microspheres prepared by wet coating method on a pyrolysis substrate. Ceramics International, 2019, 45, 7916-7922.	4.8	7
114	Liquid–solid–solution synthesis of ultrafine Gd2Zr2O7 nanoparticles with yield enhancement. Ceramics International, 2020, 46, 1216-1219.	4.8	7
115	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}^2 /mml:mi></mml:mi></mml:math> -delayed one-neutron emission probabilities within a neural network model. Physical Review C, 2021, 104, .	2.9	7
116	Molecular design of new organic sensitizers based on thieno[1,4]benzothiazine for dye-sensitized solar cells. RSC Advances, 2015, 5, 56865-56871.	3.6	6
117	Chemical strain-dependent two-dimensional transport at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:msub><mml:mterfaces <mml:math<="" td=""><td>text>AlO<</td><td>/mml:mtext></td></mml:mterfaces></mml:msub></mml:mrow></mml:math>	text>AlO<	/mml:mtext>

#	Article	IF	Citations
127	Highâ€Performance Ruthenium Sensitizers Containing Imidazolium Counterions for Efficient Dye Sensitization in Water. ChemSusChem, 2017, 10, 2914-2921.	6.8	4
128	Surface energetics of carbon nanotubes–based nanocomposites fabricated by microwave-assisted approach. Journal of Materials Research, 2019, 34, 3361-3367.	2.6	4
129	Recent advances in experimental thermodynamics of metal–organic frameworks. Powder Diffraction, 2019, 34, 297-301.	0.2	4
130	Real-time monitoring of surface acetone enolization and aldolization. Catalysis Science and Technology, 2020, 10, 935-939.	4.1	4
131	A Comparative Study of Fibroblast Behaviors under Cyclic Stress Stimulus and Static Culture on 3D Patterned Matrix. Journal of Bionic Engineering, 2013, 10, 148-155.	5.0	3
132	Dehydration Pathway of CoF ₂ ·4H ₂ O Revisited by Integrated ex Situ and in Situ Calorimetric and Structural Studies. Journal of Physical Chemistry C, 2020, 124, 3551-3556.	3.1	3
133	Determining the hydration energetics on carbon-supported Ru catalysts: An adsorption calorimetry and density functional theory study. Catalysis Today, 2021, 365, 172-180.	4.4	3
134	Formation Energetics and Guest—Host Interactions of Molybdenum Carbide Confined in Zeolite Y. Industrial & Engineering Chemistry Research, 2021, 60, 13991-14003.	3.7	3
135	Realizing the enhanced cyclability of a cactus-like NiCo2O4 nanocrystal anode fabricated by molecular layer deposition. Dalton Transactions, 2021, 50, 511-519.	3.3	3
136	CHEMICAL VAPOR DEPOSITION OF Zr _x Hf _{1-x} O ₂ THIN FILMS USING ANHYDROUS MIXED-METAL NITRATES PRECURSORS. Integrated Ferroelectrics, 2008, 97, 93-102.	0.7	2
137	Interface modulation and resistive switching evolution in Pt/NiO x /Al2O3/n+–Si structure. Applied Physics A: Materials Science and Processing, 2015, 118, 1365-1370.	2.3	2
138	Thermodynamics of Complex Solids. Journal of Materials Research, 2019, 34, 3241-3242.	2.6	2
139	Thermodynamics of molybdenum trioxide encapsulated in zeolite Y. AICHE Journal, 2021, 67, e17464.	3.6	2
140	Hosting AlCl3 on ternary metal oxide composites for catalytic oligomerization of 1-decene: Revealing the role of supports via performance evaluation and DFT calculation. Microporous and Mesoporous Materials, 2022, 333, 111665.	4.4	2
141	Rh(<scp>iii</scp>)-catalysed C–H/C–H cross-coupling of <i>S</i> -aryl sulfoximines with thiophenes: facile access to [1]benzothieno[3,2- <i>b</i>][1]benzothiophene (BTBT) and benzothiazines. Chemical Communications, 0, , .	4.1	2
142	Constructing AgY@Cu-BTC hybrid composite for enhanced sulfides capture and moisture resistance. Microporous and Mesoporous Materials, 2022, 341, 112043.	4.4	2
143	Forming-Free Unipolar Resistive Switching in BiFe0.95Co0.05O3 Films. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1679-1682.	1.8	1
144	Spontaneous self-formation of molecular ferroelectric heterostructures. Physical Chemistry Chemical Physics, 2021, 23, 3335-3340.	2.8	1

#	Article	IF	CITATIONS
145	Reversible ionic liquids (RevILs) for the preparation of thermally stable SBA-15 supported gold nanoparticle catalysts. Applied Catalysis A: General, 2022, 643, 118725.	4.3	1
146	Growth and characterization of SrBi2Ta2O9thin films prepared by rapid thermal annealing. Ferroelectrics, 2001, 263, 303-308.	0.6	0
147	The ferromagnetic and ferroelectric properties of (Bi <inf>0.9</inf> La <inf>0.1</inf>)(Fe <inf>0.95</inf> Co <inf>0.05</inf>)O <inf>3</inf> ., 2010, , .		O
148	Room Temperature Multiferroicity in Zn0.98Cu0.020 Film Prepared in N Plasma. Journal of Superconductivity and Novel Magnetism, 2011, 24, 2119-2122.	1.8	0
149	The ferromagnetic and ferroelectric properties of (Bi _{0.9} La _{0.1})(Fe _{0.95} Co _{0.05})O ₃ . Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 133-136.	0.8	0
150	Synthesis of Water-Soluble Cyclen-Functionalised Fullerene C ₆₀ Derivatives. Journal of Chemical Research, 2014, 38, 251-253.	1.3	0
151	Enhanced Grain Growth Behavior of Ferritic Steel during Continuous Cyclic Annealing. Steel Research International, 2018, 89, 1800222.	1.8	0
152	Conductivity Modulation of a Slit Channel in a Monolayer MoS 2 Homostructure. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000082.	2.4	0