Jae-Kyu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8993063/publications.pdf

Version: 2024-02-01

65	2,720	29	51
papers	citations	h-index	g-index
65	65	65	3203
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chemical Engineering Journal, 2017, 307, 74-84.	6.6	226
2	Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. Journal of Hazardous Materials, 2017, 326, 145-156.	6.5	188
3	Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy, 2016, 165, 64-72.	1.8	149
4	Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 100-107.	2.7	121
5	Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud. Journal of Industrial and Engineering Chemistry, 2014, 20, 1432-1437.	2.9	118
6	Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. Journal of Industrial and Engineering Chemistry, 2015, 22, 317-323.	2.9	114
7	Photocatalytic degradation of Metronidazole with illuminated TiO2 nanoparticles. Journal of Environmental Health Science & Engineering, 2015, 13, 35.	1.4	111
8	Application of ZnO–Fe3O4 Nanocomposite on the Removal of Azo Dye from Aqueous Solutions: Kinetics and Equilibrium Studies. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	90
9	Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere, 2020, 243, 125257.	4.2	84
10	Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Chemosphere, 2021, 267, 128889.	4.2	71
11	Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Chemosphere, 2022, 286, 131776.	4.2	70
12	Buffalo weed (<i>Ambrosia trifida L. var. trifida</i>) biochar for cadmium (II) and lead (II) adsorption in single and mixed system. Desalination and Water Treatment, 2013, 51, 7732-7745.	1.0	69
13	Removal of Arsenic and Phosphate from Aqueous Solution by Metal (Hydr-)oxide Coated Sand. ACS Sustainable Chemistry and Engineering, 2014, 2, 1128-1138.	3.2	62
14	Synthesis, characterization, and application of ZnO/TiO ₂ nanocomposite for photocatalysis of a herbicide (Bentazon). Desalination and Water Treatment, 2016, 57, 13632-13644.	1.0	62
15	Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads. Journal of Industrial and Engineering Chemistry, 2015, 26, 226-233.	2.9	60
16	Multivariate modeling via artificial neural network applied to enhance methylene blue sorption using graphene-like carbon material prepared from edible sugar. Journal of Molecular Liquids, 2018, 265, 416-427.	2.3	58
17	Porous graphene oxide based inverse spinel nickel ferrite nanocomposites for the enhanced adsorption removal of arsenic. RSC Advances, 2016, 6, 73776-73789.	1.7	57
18	Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. Journal of Hazardous Materials, 2008, 150, 565-572.	6.5	54

#	Article	IF	CITATIONS
19	Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalination and Water Treatment, 2012, 40, 77-83.	1.0	54
20	Facile synthesis of flowered mesoporous graphene oxide-lanthanum fluoride nanocomposite for adsorptive removal of arsenic. Journal of Molecular Liquids, 2019, 279, 32-42.	2.3	54
21	Process modeling and optimization of an iron oxide immobilized graphene oxide gadolinium nanocomposite for arsenic adsorption. Journal of Molecular Liquids, 2020, 299, 112261.	2.3	47
22	Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite. Metals, 2017, 7, 225.	1.0	45
23	Influencing factors on sorption of TNT and RDX using rice husk biochar. Journal of Industrial and Engineering Chemistry, 2015, 32, 178-186.	2.9	44
24	Photocatalytic degradation of diazinon by illuminated WO ₃ nanopowder. Desalination and Water Treatment, 2016, 57, 8262-8269.	1.0	39
25	Removal of As(V) and Cr(VI) in aqueous solution by sand media simultaneously coated with Fe and Mn oxides. Journal of Industrial and Engineering Chemistry, 2012, 18, 188-192.	2.9	36
26	APPLICATIONS OF FERRATE(VI) IN THE TREATMENT OF WASTEWATERS. Environmental Engineering Research, 2005, 10, 269-282.	1.5	35
27	Removal of As(III) and As(V) by natural and synthetic metal oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 202-207.	2.3	33
28	Ferrate(VI): A green chemical for the oxidation of cyanide in aqueous/waste solutions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 803-810.	0.9	32
29	Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. Journal of Environmental Health Science & Engineering, 2013, 11, 23.	1.4	32
30	Application of Ni-doped ZnO rods for the degradation of an azo dye from aqueous solutions. Korean Journal of Chemical Engineering, 2016, 33, 812-822.	1.2	31
31	Potential electromagnetic column treatment of heavy metal contaminated water using porous Gd2O3-doped graphene oxide nanocomposite: Characterization and surface interaction mechanisms. Journal of Water Process Engineering, 2021, 41, 102083.	2.6	25
32	Photocatalytic Degradation of a Textile Dye by Illuminated Tungsten Oxide Nanopowder. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	23
33	Photocatalytic reduction of hexavalent chromium with illuminated amorphous FeOOH. Environmental Technology (United Kingdom), 2015, 36, 1132-1140.	1.2	23
34	Application of Scallop shell-Fe3O4 Nano-Composite for the Removal Azo Dye from Aqueous Solutions. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	22
35	Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water. Journal of Environmental Management, 2016, 175, 60-66.	3.8	21
36	Removal of U(VI) by sugar-based magnetic pseudo–graphene oxide and its application to authentic groundwater using electromagnetic system. Environmental Science and Pollution Research, 2019, 26, 22323-22337.	2.7	21

#	Article	IF	Citations
37	Improving the clean-up efficiency of field soil contaminated with diesel oil by the application of stabilizers. Environmental Technology (United Kingdom), 2013, 34, 1481-1487.	1.2	20
38	Biopolymer mixture-entrapped modified graphene oxide for sustainable treatment of heavy metal contaminated real surface water. Journal of Water Process Engineering, 2022, 46, 102631.	2.6	20
39	Iron Oxide ImpregnatedMorus albaL. Fruit Peel for Biosorption of Co(II): Biosorption Properties and Mechanism. Scientific World Journal, The, 2013, 2013, 1-14.	0.8	19
40	Application of C ₁₄ /SiO ₂ â€"Fe ₃ O ₄ and ACâ€"Fe ₃ Desalination and Water Treatment, 2016, 57, 22519-22532.	1.0	19
41	A novel reutilization method for automobile shredder residue as an adsorbent for the removal of methylene blue: Mechanisms and heavy metal recovery using an ultrasonically assisted acid. Chemical Engineering Research and Design, 2016, 99, 88-97.	2.7	18
42	Factors affect on bioremediation of Co(II) and Pb(II) onto <i>Lonicera japonica</i> flowers powder. Desalination and Water Treatment, 2016, 57, 13066-13080.	1.0	18
43	Synthesis and application of Fe-N-Cr-TiO2 nanocatalyst for photocatalytic degradation of Acid Black 1 under LED light irradiation. Journal of Molecular Liquids, 2019, 279, 232-240.	2.3	18
44	Portable SA/CMC entrapped bimetallic magnetic fly ash zeolite spheres for heavy metals contaminated industrial effluents treatment via batch and column studies. Scientific Reports, 2022, 12, 3430.	1.6	18
45	Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2. Waste Management, 2016, 48, 374-382.	3.7	17
46	Effective adsorptive removal of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine by pseudographitic carbon: kinetics, equilibrium and thermodynamics. Environmental Chemistry, 2018, 15, 100.	0.7	15
47	Application of cadmium-doped ZnO for the solar photocatalytic degradation of phenol. Water Science and Technology, 2019, 79, 375-385.	1.2	15
48	Application of ZnO nanorods doped with Cu for enhanced sonocatalytic removal of Cr(VI) from aqueous solutions. Environmental Science and Pollution Research, 2020, 27, 2691-2706.	2.7	15
49	Encapsulated zerovalent iron/nickel-fly ash zeolite foam for treating industrial wastewater contaminated by heavy metals. Materials Today Chemistry, 2021, 22, 100577.	1.7	14
50	Polyvinyl Alcohol Polymer Functionalized Graphene Oxide Decorated with Gadolinium Oxide for Sequestration of Radionuclides from Aqueous Medium: Characterization, Mechanism, and Environmental Feasibility Studies. Polymers, 2021, 13, 3835.	2.0	13
51	Heavy metal removal from aqueous solution by tannins immobilized on collagen. Desalination and Water Treatment, 2012, 48, 1-8.	1.0	12
52	Sulfur-anchored palm shell waste-based activated carbon for ultrahigh sorption of Hg(II) for in-situ groundwater treatment. Journal of Hazardous Materials, 2021, 417, 125995.	6.5	12
53	Bimetallic oxide-coated sand filter for simultaneous removal of bacteria, Fe(II), and Mn(II) in smalland pilot-scale column experiments. Desalination and Water Treatment, 2015, 54, 3380-3391.	1.0	10
54	Facile synthesis of lanthanum hydroxide doped graphene oxide for scavenged of radioactive and heavy elements from water. Synthetic Metals, 2021, 273, 116691.	2.1	10

#	Article	IF	CITATIONS
55	Application of ferrate for the treatment of metal-sulfide. Journal of Environmental Management, 2013, 116, 95-100.	3.8	8
56	Application of an electrochemical sensor using copper oxide nanoparticles/polyalizarin yellow R nanocomposite for hydrogen peroxide. Environmental Science and Pollution Research, 2021, 28, 38809-38816.	2.7	7
57	Photocatalytic Removal of Reactive Black-5 Dye from Aqueous Solution by UV Irradiation in Aqueous TiO2: Equilibrium and Kinetics Study. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	6
58	Application of a novel electrochemical sensor containing organo-modified sericite for the detection of low-level arsenic. Environmental Science and Pollution Research, 2016, 23, 1044-1049.	2.7	6
59	Application of activated carbon impregnated with metal oxides to the treatment of multi-contaminants. Environmental Technology (United Kingdom), 2012, 33, 1553-1559.	1.2	5
60	Bacterial removal in flow-through columns packed with iron-manganese bimetallic oxide-coated sand. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1364-1371.	0.9	5
61	Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	5
62	Green Activated Magnetic Graphitic Carbon Oxide and Its Application for Hazardous Water Pollutants Removal. Metals, 2019, 9, 935.	1.0	5
63	Application of iron-coated sand on the treatment of toxic metals. Water Science and Technology: Water Supply, 2004, 4, 335-341.	1.0	4
64	Oxidation of sulphide in abandoned mine tailings by ferrate. Environmental Technology (United) Tj ETQq0 0 0 rg	BT /Overl	ock ₃ 10 Tf 50 3
65	Facile provision of CuO-Kaolin nanocomposite for boosted sonocatalytic removal of Cr(VI) from hydrous media. Environmental Technology (United Kingdom), 2021, , 1-12.	1.2	2