Brenno A D Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8992587/publications.pdf

Version: 2024-02-01

122 papers 4,651 citations

76294 40 h-index 63 g-index

127 all docs

127 docs citations

127 times ranked

5633 citing authors

#	Article	IF	CITATIONS
1	2,1,3â€Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules. European Journal of Organic Chemistry, 2013, 2013, 228-255.	1.2	255
2	Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds. Accounts of Chemical Research, 2015, 48, 1560-1569.	7.6	212
3	Photophysical and electrochemical properties of π-extended molecular 2,1,3-benzothiadiazoles. Tetrahedron, 2005, 61, 10975-10982.	1.0	207
4	What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances, 2014, 4, 54282-54299.	1.7	193
5	Inkjet Printing of Lanthanide–Organic Frameworks for Anti-Counterfeiting Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27115-27123.	4.0	143
6	Recent Developments in the Chemistry of Deoxyribonucleic Acid (DNA) Intercalators: Principles, Design, Synthesis, Applications and Trends. Molecules, 2009, 14, 1725-1746.	1.7	113
7	The Biginelli Reaction with an Imidazolium–Tagged Recyclable Iron Catalyst: Kinetics, Mechanism, and Antitumoral Activity. Chemistry - A European Journal, 2013, 19, 4156-4168.	1.7	109
8	Are Molecular 5,8-Ï€-Extended Quinoxaline Derivatives Good Chromophores for Photoluminescence Applications?. European Journal of Organic Chemistry, 2006, 2006, 4924-4933.	1.2	106
9	Carbon Dots (Câ€dots) from Cow Manure with Impressive Subcellular Selectivity Tuned by Simple Chemical Modification. Chemistry - A European Journal, 2015, 21, 5055-5060.	1.7	106
10	1-n-Butyl-3-methylimidazolium tetrachloro-indate (BMIâ‹InCl4BMIâ‹InCl4) as a media for the synthesis of biodiesel from vegetable oils. Journal of Catalysis, 2007, 249, 154-161.	3.1	100
11	Review on the Ugi Multicomponent Reaction Mechanism and the Use of Fluorescent Derivatives as Functional Chromophores. ACS Omega, 2020, 5, 972-979.	1.6	92
12	Mechanistic Studies on Lewis Acid Catalyzed Biginelli Reactions in Ionic Liquids: Evidence for the Reactive Intermediates and the Role of the Reagents. Journal of Organic Chemistry, 2012, 77, 10184-10193.	1.7	90
13	Ionic Liquid Supported Acid/Baseâ€Catalyzed Production of Biodiesel. ChemSusChem, 2008, 1, 759-762.	3.6	87
14	On the Species Involved in the Vaporization of Imidazolium Ionic Liquids in a Steam-Distillation-Like Process. Angewandte Chemie - International Edition, 2006, 45, 7251-7254.	7.2	85
15	Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for?. Journal of Organic Chemistry, 2014, 79, 3383-3397.	1.7	82
16	Ionic Liquid Effect over the Biginelli Reaction under Homogeneous and Heterogeneous Catalysis. ACS Catalysis, 2013, 3, 1420-1430.	5.5	81
17	Selective mitochondrial staining with small fluorescent probes: importance, design, synthesis, challenges and trends for new markers. RSC Advances, 2013, 3, 5291.	1.7	78
18	The role of ionic liquids in co-catalysis of Baylis-Hillman reaction: interception of supramolecular species via electrospray ionization mass spectrometry. Journal of Physical Organic Chemistry, 2006, 19, 731-736.	0.9	69

#	Article	IF	Citations
19	Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS(/MS). Tetrahedron, 2014, 70, 3306-3313.	1.0	69
20	Reductive sulfur extrusion reaction of 2,1,3-benzothiadiazole compounds: a new methodology using NaBH4/CoCl2·6H2O(cat) as the reducing system. Tetrahedron Letters, 2005, 46, 6843-6846.	0.7	68
21	Enzyme-mediated epoxidation of methyl oleate supported by imidazolium-based ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 98-103.	1.8	67
22	New Sensitive Fluorophores for Selective DNA Detection. Organic Letters, 2007, 9, 4001-4004.	2.4	64
23	Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). Chemical Communications, 2014, 50, 338-340.	2.2	63
24	Heteropolyacid-Containing Ionic Liquid-Catalyzed Multicomponent Synthesis of Bridgehead Nitrogen Heterocycles: Mechanisms and Mitochondrial Staining. Journal of Organic Chemistry, 2018, 83, 4044-4053.	1.7	61
25	Intermolecular hydroamination and hydroarylation reactions of alkenes in ionic liquids. Tetrahedron Letters, 2006, 47, 6775-6779.	0.7	60
26	Pronounced ionic liquid effect in the synthesis of biologically active isatin-3-oxime derivatives under acid catalysis. Tetrahedron Letters, 2008, 49, 5639-5641.	0.7	59
27	Studies on the Eschenmoser coupling reaction and insights on its mechanism. Application in the synthesis of Norallosedamine and other alkaloids. Tetrahedron, 2009, 65, 2484-2496.	1.0	59
28	On the use of 2,1,3-benzothiadiazole derivatives as selective live cell fluorescence imaging probes. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6001-6007.	1.0	56
29	Synthesis, properties and highly selective mitochondria staining with novel, stable and superior benzothiadiazole fluorescent probes. RSC Advances, 2012, 2, 1524-1532.	1.7	55
30	Vapors from Ionic Liquids: Reconciling Simulations with Mass Spectrometric Data. Journal of Physical Chemistry Letters, 2012, 3, 3435-3441.	2.1	51
31	The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Advances, 2015, 5, 48506-48515.	1.7	51
32	Charge-Tagged Acetate Ligands As Mass Spectrometry Probes for Metal Complexes Investigations: Applications in Suzuki and Heck Phosphine-Free Reactions. Journal of Organic Chemistry, 2011, 76, 10140-10147.	1.7	49
33	Combined Role of the Asymmetric Counteranion-Directed Catalysis (ACDC) and Ionic Liquid Effect for the Enantioselective Biginelli Multicomponent Reaction. Journal of Organic Chemistry, 2018, 83, 12143-12153.	1.7	49
34	Application of Chiral Ionic Liquids for Asymmetric Induction in Catalysis. Current Organic Chemistry, 2009, 13, 1259-1277.	0.9	48
35	Mechanistic knowledge and noncovalent interactions as the key features for enantioselective catalysed multicomponent reactions: a critical review. Organic and Biomolecular Chemistry, 2019, 17, 7260-7269.	1.5	48
36	Design, synthesis and application of fluorescent 2,1,3-benzothiadiazole-triazole-linked biologically active lapachone derivatives. New Journal of Chemistry, 2014, 38, 2569.	1.4	45

#	Article	IF	CITATIONS
37	Morita–Baylis–Hillman Reaction: ESI-MS(/MS) Investigation with Charge Tags and Ionic Liquid Effect Origin Revealed by DFT Calculations. Journal of Organic Chemistry, 2014, 79, 5239-5248.	1.7	45
38	Designed Benzothiadiazole Fluorophores for Selective Mitochondrial Imaging and Dynamics. Chemistry - A European Journal, 2014, 20, 15360-15374.	1.7	43
39	Ionically Tagged Iron Complexâ€Catalyzed Epoxidation of Olefins in Imidazoliumâ€Based Ionic Liquids. ChemSusChem, 2012, 5, 716-726.	3.6	42
40	Bioimaging, cellular uptake and dynamics in living cells of a lipophilic fluorescent benzothiadiazole at low temperature (4 ${\rm \hat{A}}^{\circ}{\rm C}$). Chemical Science, 2014, 5, 3995.	3.7	41
41	Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry - A European Journal, 2022, 28, .	1.7	40
42	Tuning the Biginelli reaction mechanism by the ionic liquid effect: the combined role of supported heteropolyacid derivatives and acidic strength. RSC Advances, 2019, 9, 27125-27135.	1.7	39
43	Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features. BMC Cancer, 2015, 15, 283.	1.1	38
44	Water-Soluble Tb3+ and Eu3+ Complexes with Ionophilic (Ionically Tagged) Ligands as Fluorescence Imaging Probes. Inorganic Chemistry, 2013, 52, 10199-10205.	1.9	36
45	The impressive chemistry, applications and features of ionic liquids: properties, catalysis & mp; catalysts and trends. Journal of the Brazilian Chemical Society, 2012, 23, 987-1007.	0.6	34
46	Identification of carotenoid isomers in crude and bleached palm oils by mass spectrometry. LWT - Food Science and Technology, 2018, 89, 631-637.	2.5	34
47	Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules, 2022, 27, 132.	1.7	32
48	Probing deep into the interaction of a fluorescent chalcone derivative and bovine serum albumin (BSA): an experimental and computational study. Organic and Biomolecular Chemistry, 2013, 11, 4764.	1.5	31
49	Deciphering the Dynamics of Organic Nanoaggregates with AIEE Effect and Excited States: Lipophilic Benzothiadiazole Derivatives as Selective Cell Imaging Probes. Journal of Organic Chemistry, 2020, 85, 12614-12634.	1.7	31
50	ESIPT or not ESIPT? Revisiting recent results on 2,1,3-benzothiadiazole under the TD-DFT light. RSC Advances, 2014, 4, 14189-14192.	1.7	30
51	The influence of the ring size of thiolactams in the Eschenmoser coupling reaction in presence of DBU. Formation of bicyclic thiazolidinones or thioimines. Tetrahedron Letters, 2004, 45, 1437-1440.	0.7	29
52	From Live Cells to <i>Caenorhabditis elegans</i> Selective Staining and Quantification of Lipid Structures Using a Fluorescent Hybrid Benzothiadiazole Derivative. ACS Omega, 2018, 3, 3874-3881.	1.6	29
53	Catalytic Aminolysis (Amide Formation) from Esters and Carboxylic Acids: Mechanism, Enhanced Ionic Liquid Effect, and its Origin. ChemCatChem, 2011, 3, 1911-1920.	1.8	28
54	Addition of activated olefins to cyclic N-acyliminium ions in ionic liquids. Tetrahedron Letters, 2006, 47, 1669-1672.	0.7	27

#	Article	IF	CITATIONS
55	In situ generated palladium nanoparticles in imidazolium-based ionic liquids: a versatile medium for an efficient and selective partial biodiesel hydrogenation. Catalysis Science and Technology, 2011, 1, 480.	2.1	27
56	Magnetic Ionic Liquids Produced by the Dispersion of Magnetic Nanoparticles in 1- <i>n</i> -Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf ₂). ACS Applied Materials & Dispersion of Magnetic Nanoparticles in Applied Nanopartic	4.0	27
57	Selective and efficient mitochondrial staining with designed 2,1,3-benzothiadiazole derivatives as live cell fluorescence imaging probes. Journal of the Brazilian Chemical Society, 2012, 23, 770-781.	0.6	27
58	A concise and stereoselective synthesis of $(+/\hat{a}^2)$ -erythro-methylphenidate. Tetrahedron Letters, 2003, 44, 2923-2926.	0.7	25
59	Selective endocytic trafficking in live cells with fluorescent naphthoxazoles and their boron complexes. Chemical Communications, 2015, 51, 9141-9144.	2.2	24
60	Insights on the Petasis Borono–Mannich multicomponent reaction mechanism. RSC Advances, 2015, 5, 76337-76341.	1.7	24
61	Au nanoparticle-poly(ionic liquid) nanocomposite electrode for the voltammetric detection of triclosan in lake water and toothpaste samples. Microchemical Journal, 2020, 152, 104421.	2.3	24
62	How and Why to Investigate Multicomponent Reactions Mechanisms? A Critical Review. Chemical Record, 2021, 21, 2762-2781.	2.9	24
63	On the selective detection of duplex deoxyribonucleic acids by 2,1,3-benzothiadiazole fluorophores. Molecular BioSystems, 2010, 6, 967.	2.9	23
64	Condensed, solution and gas phase behaviour of mono- and dinuclear 2,6-diacetylpyridine (dap) hydrazone copper complexes probed by X-ray, mass spectrometry and theoretical calculations. Dalton Transactions, 2013, 42, 11497.	1.6	22
65	Fluorescent oxazoles from quinones for bioimaging applications. RSC Advances, 2016, 6, 76056-76063.	1.7	22
66	Iron Complex with Ionic Tagâ€Catalyzed Olefin Reduction under Oxidative Conditionsâ€"A Different Reaction for Iron. ChemSusChem, 2012, 5, 2383-2389.	3.6	21
67	Fluorescent Peptoids as Selective Live Cell Imaging Probes. Journal of Organic Chemistry, 2016, 81, 2646-2651.	1.7	20
68	Redox Center Modification of Lapachones towards the Synthesis of Nitrogen Heterocycles as Selective Fluorescent Mitochondrial Imaging Probes. European Journal of Organic Chemistry, 2017, 2017, 3763-3773.	1.2	20
69	Palladium Catalyst with Task-Specific Ionic Liquid Ligands: Intracellular Reactions and Mitochondrial Imaging with Benzothiadiazole Derivatives. Journal of Organic Chemistry, 2019, 84, 5118-5128.	1.7	20
70	Steady-state kinetics of indole-3-glycerol phosphate synthase from Mycobacterium tuberculosis. Archives of Biochemistry and Biophysics, 2009, 486, 19-26.	1.4	19
71	N-heterocyclic carbenes with negative-charge tags: direct sampling from ionic liquid solutions. RSC Advances, 2012, 2, 3201.	1.7	19
72	Phosphine-free Heck reaction: mechanistic insights and catalysis "on water―using a charge-tagged palladium complex. New Journal of Chemistry, 2014, 38, 2958.	1.4	19

#	Article	IF	CITATIONS
73	Styrene polymerization efficiently catalyzed by iron-containing imidazolium-based ionic liquids: Reaction mechanism and enhanced ionic liquid effect. Catalysis Communications, 2015, 63, 66-73.	1.6	18
74	Cationic miniemulsion polymerization of styrene mediated by imidazolium based ionic liquid. European Polymer Journal, 2018, 104, 51-56.	2.6	18
7 5	When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Organic Chemistry Frontiers, 2019, 6, 2371-2384.	2.3	18
76	Designed nonâ€symmetrical 4,7â€piâ€extendedâ€2,1,3â€benzothiadiazole derivatives: Synthesis guided by DFT predictions. Journal of Physical Organic Chemistry, 2014, 27, 303-309.	0.9	17
77	Structural Organization and Supramolecular Interactions of the Task-Specific Ionic Liquid 1-Methyl-3-carboxymethylimidazolium Chloride: Solid, Solution, and Gas Phase Structures. Journal of Physical Chemistry C, 2014, 118, 17878-17889.	1.5	17
78	Photocatalytic Reverse Semiâ€Combustion Driven by Ionic Liquids. ChemSusChem, 2019, 12, 1011-1016.	3.6	17
79	Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4H)-one Syntheses, their properties and biological application; why should one study mechanisms?. Organic and Biomolecular Chemistry, 2021, 19, 1514-1531.	1.5	15
80	From cow manure to bioactive carbon dots: a light-up probe for bioimaging investigations, glucose detection and potential immunotherapy agent for melanoma skin cancer. RSC Advances, 2021, 11, 6346-6352.	1.7	15
81	Nickel-containing di-charged imidazolium ligand with high crystalline organization. Interception and characterization of a transient carbene/cation species. Inorganica Chimica Acta, 2011, 370, 505-512.	1.2	14
82	Synthesis, Structure, Properties, and Bioimaging of a Fluorescent Nitrogen-Linked Bisbenzothiadiazole. Journal of Organic Chemistry, 2016, 81, 2958-2965.	1.7	14
83	A benzothiadiazole-quinoline hybrid sensor for specific bioimaging and surgery procedures in mice. Sensors and Actuators B: Chemical, 2021, 328, 128998.	4.0	14
84	Appending ionic liquids to fluorescent benzothiadiazole derivatives: Light up and selective lysosome staining. Sensors and Actuators B: Chemical, 2020, 321, 128530.	4.0	12
85	Plasma membrane staining with fluorescent hybrid benzothiadiazole and coumarin derivatives: Tuning the cellular selection by molecular design. Dyes and Pigments, 2021, 186, 109005.	2.0	12
86	Preferential Mitochondrial Localization of a Goniothalamin Fluorescent Derivative. ACS Omega, 2017, 2, 3774-3784.	1.6	11
87	Down- and Up-Conversion Photoluminescence of Carbon-Dots from Brewing Industry Waste: Application in Live Cell-Imaging Experiments. Journal of the Brazilian Chemical Society, 2015, , .	0.6	10
88	Plasma membrane imaging with a fluorescent benzothiadiazole derivative. Beilstein Journal of Organic Chemistry, 2019, 15, 2644-2654.	1.3	10
89	High Molecular Weight Polystyrene Obtained by Cationic Emulsion Polymerization Catalyzed by Imidazoliumâ€Based Ionic Liquid. Macromolecular Reaction Engineering, 2019, 13, 1800061.	0.9	10
90	The catalytic mechanism of indole-3-glycerol phosphate synthase (IGPS) investigated by electrospray ionization (tandem) mass spectrometry. Tetrahedron Letters, 2008, 49, 5914-5917.	0.7	9

#	Article	IF	Citations
91	Expanding the Biological Application of Fluorescent Benzothiadiazole Derivatives: A Phenotypic Screening Strategy for Anthelmintic Drug Discovery Using Caenorhabditis elegans. SLAS Discovery, 2019, 24, 755-765.	1.4	9
92	Fluorescent Benzoselenadiazoles: Synthesis, Characterization, and Quantification of Intracellular Lipid Droplets and Multicellular Model Staining. Journal of Organic Chemistry, 2020, 85, 10561-10573.	1.7	9
93	An Ionically Tagged Water-Soluble Artificial Enzyme Promotes the Dephosphorylation Reaction with Nitroimidazole: Enhanced Ionic Liquid Effect and Mechanism. Journal of Organic Chemistry, 2015, 80, 5979-5983.	1.7	8
94	Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes. Environmental Science and Pollution Research, 2016, 23, 19084-19095.	2.7	8
95	Influence of hydrodynamic conditions on the degradation of 1-butyl-3-methylimidazolium chloride solutions on boron-doped diamond anodes. Chemosphere, 2019, 224, 343-350.	4.2	8
96	Reverse Semiâ€Combustion Driven by Titanium Dioxideâ€Ionic Liquid Hybrid Photocatalyst. ChemSusChem, 2020, 13, 5580-5585.	3.6	8
97	Ĵμ-caprolactone ring-opening polymerization catalyzed by imidazolium-based ionic liquid under mild reaction conditions. Journal of Polymer Research, 2022, 29, 1.	1.2	8
98	What do we know about the ionic liquid effect in catalyzed multicomponent reactions?: A critical review. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100608.	3.2	7
99	Synthesis and Biological Investigation of (+)-JD1, an Organometallic BET Bromodomain Inhibitor. Organometallics, 2020, 39, 408-416.	1.1	6
100	Thermal performance of nanoencapsulated phase change material in high molecular weight polystyrene. Polimeros, 2020, 30, .	0.2	5
101	Charge-tagged N-heterocyclic carbenes (NHC): Direct transfer from ionic liquid solutions and long-lived nature in the gas phase. Journal of the American Society for Mass Spectrometry, 2017, 28, 1021-1029.	1.2	4
102	Is the formation of N-heterocyclic carbenes (NHCs) a feasible mechanism for the distillation of imidazolium ionic liquids?. Physical Chemistry Chemical Physics, 2018, 20, 24716-24725.	1.3	4
103	Effect of heterocyclic nitrogen ionic liquid additives on the rate of backreaction in DSSCS: An electrochemical characterization. Journal of Science: Advanced Materials and Devices, 2021, 6, 483-487.	1.5	4
104	Solvent Screening Is Not Solvent Effect: A Review on the Most Neglected Aspect of Multicomponent Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
105	Synthesis and enzymatic evaluation of the guanosine analogue 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG): insights into the phosphorolysis reaction mechanism based on the blueprint transition state: SN1 or S N2?. Journal of the Brazilian Chemical Society, 2010, 21, 151-156.	0.6	3
106	On the Role of Metal-Containing Imidazolium-Based Ionic Liquid Catalysts in the Formation of Tailored Polystyrene. Industrial & Description (2020, 59, 21685-21699).	1.8	3
107	Cationic polymerization of styrene using iron-containing ionic liquid catalysts in an aqueous dispersed medium. Polimeros, 2021, 31, .	0.2	3
108	Exploratory comparisons between different anti-mitotics in clinically-used drug combination in triple negative breast cancer. Oncotarget, 2021, 12, 1920-1936.	0.8	3

#	Article	IF	Citations
109	Ionic Liquid Effect Probed by Nuclear Magnetic Resonance: NMR Approaches to Catalytic Reactions Performed in Ionic Liquids. Current Organic Chemistry, 2013, 17, 273-282.	0.9	3
110	Solid, Solution and Gas Phase Interactions of an Imidazolium-Based Task-Specific Ionic Liquid Derived from Natural Kojic Acid. Journal of the Brazilian Chemical Society, 2014, , .	0.6	3
111	Diverse 3-Methylthio-4-Substituted Maleimides through a Novel Rearrangement Reaction: Synthesis and Selective Cell Imaging. Journal of Organic Chemistry, 2022, 87, 2809-2820.	1.7	3
112	Indium complex with task-specific ionic liquid ligands: Ligand to ligand charge transfer in the excited state investigation and reliable DFT predictions. Journal of Luminescence, 2020, 225, 117391.	1.5	2
113	Task-Specific Ionic Liquids: Design, Properties and Applications. , 2019, , 1-11.		1
114	Theoretical Photophysics (DFT) of Fluorescent Benzothiadiazole Probes. Revista Virtual De Quimica, 2015, 7, .	0.1	1
115	Editorial (Hot Topic: Between Revolution and Ignorance: The Two Worlds of Ionic Liquids). Current Organic Chemistry, 2013, 17, 203-203.	0.9	0
116	CATALYZED AND NON-CATALYZED SYNTHESIS OF BIOACTIVE MONASTROL. Quimica Nova, 2014, , .	0.3	0
117	Frontispiece: Designed Benzothiadiazole Fluorophores for Selective Mitochondrial Imaging and Dynamics. Chemistry - A European Journal, 2014, 20, .	1.7	O
118	Front Cover: Redox Center Modification of Lapachones towards the Synthesis of Nitrogen Heterocycles as Selective Fluorescent Mitochondrial Imaging Probes (Eur. J. Org. Chem. 26/2017). European Journal of Organic Chemistry, 2017, 2017, 3738-3738.	1.2	0
119	Enzymes and Ionic Liquids: a Promising Combination Towards a Clean Biodiesel. Revista Virtual De Quimica, 2013, 5, .	0.1	0
120	Studies on the supramolecular interactions in functionalized imidazolium-based ionic liquids., 0,,.		0
121	Biginelli reaction in ionic liquids: synthesis and application of a novel iron catalyst with dual activation. , 0 , , .		0
122	Ionic Liquid Effect in Catalysed Multicomponent Reactions. RSC Catalysis Series, 2019, , 377-392.	0.1	0