Clément Cabanetos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8991600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linear Side Chains in Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene–Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance. Journal of the American Chemical Society, 2013, 135, 4656-4659.	13.7	661
2	Importance of the Donor:Fullerene Intermolecular Arrangement for High-Efficiency Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 9608-9618.	13.7	302
3	Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2014, 26, 2299-2306.	6.7	119
4	Simply Complex: The Efficient Synthesis of an Intricate Molecular Acceptor for High-Performance Air-Processed and Air-Tested Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2017, 29, 1309-1314.	6.7	98
5	Triphenylamine and some of its derivatives as versatile building blocks for organic electronic applications. Polymer International, 2019, 68, 589-606.	3.1	91
6	A Mechanofluorochromic Push–Pull Small Molecule with Aggregation ontrolled Linear and Nonlinear Optical Properties. Advanced Materials, 2015, 27, 4285-4289.	21.0	80
7	Modulation of circularly polarized luminescence through excited-state symmetry breaking and interbranched exciton coupling in helical push–pull organic systems. Chemical Science, 2020, 11, 567-576.	7.4	79
8	Electron-Deficient <i>N</i> -Alkyloyl Derivatives of Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Yield Efficient Polymer Solar Cells with Open-Circuit Voltages > 1 V. Chemistry of Materials, 2014, 26, 2829-2835.	6.7	76
9	Phthalimide end-capped thienoisoindigo and diketopyrrolopyrrole as non-fullerene molecular acceptors for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 250-256.	10.3	69
10	Enantiopure versus Racemic Naphthalimide End apped Helicenic Nonâ€fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance. Chemistry - A European Journal, 2017, 23, 6277-6281.	3.3	66
11	Applying direct heteroarylation synthesis to evaluate organic dyes as the core component in PDI-based molecular materials for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2017, 5, 11623-11633.	10.3	64
12	Triphenylamine-Based Push–Pull Ïf–C ₆₀ Dyad As Photoactive Molecular Material for Single-Component Organic Solar Cells: Synthesis, Characterizations, and Photophysical Properties. Chemistry of Materials, 2018, 30, 3474-3485.	6.7	58
13	Thieno[2,3- <i>b</i>]indole-Based Small Push–Pull Chromophores: Synthesis, Structure, and Electronic Properties. Organic Letters, 2016, 18, 1582-1585.	4.6	50
14	Eco-friendly direct (hetero)-arylation polymerization: scope and limitation. Journal of Materials Chemistry C, 2017, 5, 29-40.	5.5	46
15	New Cross-Linkable Polymers with Huisgen Reaction Incorporating High μβ Chromophores for Second-Order Nonlinear Optical Applications. Chemistry of Materials, 2012, 24, 1143-1157.	6.7	41
16	Manipulation of the band gap and efficiency of a minimalist push–pull molecular donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 5145-5151.	5.5	36
17	Solution-processable thienoisoindigo-based molecular donors for organic solar cells with high open-circuit voltage. Dyes and Pigments, 2015, 115, 17-22.	3.7	34
18	Donor or Acceptor? How Selection of the Rylene Imide End Cap Impacts the Polarity of π-Conjugated Molecules for Organic Electronics. ACS Applied Energy Materials, 2018, 1, 4906-4916.	5.1	34

#	Article	IF	CITATIONS
19	Ternary organic solar cells: using molecular donor or acceptor third components to increase open circuit voltage. New Journal of Chemistry, 2019, 43, 10442-10448.	2.8	33
20	The Optimization of Direct Heteroarylation and Sonogashira Cross-Coupling Reactions as Efficient and Sustainable Synthetic Methods To Access ï€-Conjugated Materials with Near-Infrared Absorption. ACS Sustainable Chemistry and Engineering, 2016, 4, 3504-3517.	6.7	31
21	Triphenylamine/Tetracyanobutadieneâ€Based Ï€â€Conjugated Push–Pull Molecules Endâ€Capped with Arene Platforms: Synthesis, Photophysics, and Photovoltaic Response. Chemistry - A European Journal, 2020, 26, 16422-16433.	3.3	26
22	Effect of side chains on the electronic and photovoltaic properties of diketopyrrolopyrrole-based molecular acceptors. Organic Electronics, 2016, 37, 479-484.	2.6	23
23	Small molecular push–pull donors for organic photovoltaics: effect of the heterocyclic π-spacer. RSC Advances, 2015, 5, 102550-102554.	3.6	22
24	Rapid and green synthesis of complementary D-A small molecules for organic photovoltaics. Organic Electronics, 2017, 42, 322-328.	2.6	20
25	Structural Control of the Molecular Packing and Dynamics of Mechanofluorochromic Materials Based on Small Donor–Acceptor Systems with Turnâ€On Luminescence. Advanced Optical Materials, 2020, 8, 2000420.	7.3	20
26	Bromination of the benzothioxanthene Bloc: toward new π-conjugated systems for organic electronic applications. Journal of Materials Chemistry C, 2018, 6, 761-766.	5.5	18
27	Cyclopentadithiophene and Fluorene Spiro-Core-Based Hole-Transporting Materials for Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 22767-22774.	3.1	17
28	Spectroscopic Engineering toward Nearâ€Infrared Absorption of Materials Containing Perylene Diimide. ChemPlusChem, 2017, 82, 1359-1364.	2.8	16
29	Arylamine Based Photoactive Pushâ€Pull Molecular Systems: A Brief Overview of the Chemistry "Made in Angers― Chemical Record, 2019, 19, 1123-1130.	5.8	16
30	Synthesis of Molecular Dyads and Triads Based Upon Nâ€Annulated Perylene Diimide Monomers and Dimers. European Journal of Organic Chemistry, 2018, 2018, 6933-6943.	2.4	15
31	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	5.5	13
32	Pentaerythritol based push–pull tetramers for organic photovoltaics. Sustainable Energy and Fuels, 2017, 1, 1921-1927.	4.9	13
33	Direct (Hetero)Arylation Polymerization of a Spirobifluorene and a Dithienyl-Diketopyrrolopyrrole Derivative: New Donor Polymers for Organic Solar Cells. Molecules, 2018, 23, 962.	3.8	12
34	Exploration of the structure-property relationship of push-pull based dyads for single-molecule organic solar cells. Dyes and Pigments, 2019, 170, 107632.	3.7	12
35	Nitration of benzothioxanthene: towards a new class of dyes with versatile photophysical properties. New Journal of Chemistry, 2020, 44, 900-905.	2.8	12
36	Theoretical and experimental investigation on the intersystem crossing kinetics in benzothioxanthene imide luminophores, and their dependence on substituent effects. Physical Chemistry Chemical Physics, 2020, 22, 12373-12381.	2.8	11

CLéMENT CABANETOS

#	Article	IF	CITATIONS
37	Synthesis, characterization and use of benzothioxanthene imide based dimers. Chemical Communications, 2020, 56, 10131-10134.	4.1	10
38	C60-small arylamine push-pull dyads for single-material organic solar cells. Dyes and Pigments, 2019, 171, 107748.	3.7	9
39	Regioselective Monohalogenation and Homo/Hetero Dihalogenation of Benzothioxanthene Monoimide. European Journal of Organic Chemistry, 2020, 2020, 2140-2145.	2.4	9
40	Indeno[1,2-b]thiophene End-capped Perylene Diimide: Should the 1,6-Regioisomers be systematically considered as a byproduct?. Scientific Reports, 2020, 10, 3262.	3.3	9
41	Manipulation of the electronic and photovoltaic properties of materials based on small push-pull molecules by substitution of the arylamine donor block by aliphatic groups. Organic Electronics, 2016, 37, 294-304.	2.6	8
42	Effects of Anthryl Groups on the Charge Transport and Photovoltaic Properties of Small Triarylamineâ€Based Donorâ€Acceptor Molecules: A Joint Experimental and Theoretical Study. ChemistrySelect, 2017, 2, 6296-6303.	1.5	8
43	Exploring the Concept of Dimerization-Induced Intersystem Crossing: At the Origins of Spin–Orbit Coupling Selection Rules. Journal of Physical Chemistry B, 2021, 125, 8572-8580.	2.6	8
44	Molecular electron-acceptors based on benzodithiophene for organic photovoltaics. Tetrahedron Letters, 2015, 56, 2324-2328.	1.4	7
45	Thermally induced crystallization, hole-transport, NLO and photovoltaic activity of a bis-diarylamine-based push-pull molecule. Scientific Reports, 2017, 7, 8317.	3.3	7
46	Impact of the Replacement of a Triphenylamine by a Diphenylmethylamine Unit on the Electrochemical Behavior of Pentaerythritolâ€Based Pushâ€Pull Tetramers. ChemElectroChem, 2019, 6, 4215-4228.	3.4	7
47	Investigation of the K ₄ [Fe(CN) ₆]-Mediated Mono- and Bis-Palladium-Catalyzed Cyanation of the Benzothioxanthene Core. Journal of Organic Chemistry, 2021, 86, 5901-5907.	3.2	6
48	Thiochromenocarbazole imide: a new organic dye with first utility in large area flexible electroluminescent devices. Materials Chemistry Frontiers, 2022, 6, 1912-1919.	5.9	6
49	Thienoisoindigo end-capped molecular donors for organic photovoltaics: Effect of the central Ï€-conjugated connector. Dyes and Pigments, 2017, 145, 7-11.	3.7	5
50	Synthesis of push–pull triarylamine dyes containing 5,6-difluoro-2,1,3-benzothiadiazole units by direct arylation and their evaluation as active material for organic photovoltaics. Materials Advances, 2021, 2, 7456-7462.	5.4	5
51	Effect of 4-biphenyl groups on the charge transport and photovoltaic properties of arylamine based push–pull systems. New Journal of Chemistry, 2020, 44, 11441-11447.	2.8	5
52	CuAAC-Based Assembly and Characterization of a New Molecular Dyad for Single Material Organic Solar Cell. Metals, 2019, 9, 618.	2.3	4
53	Reducing Nonâ€Radiative Voltage Losses by Methylation of Push–Pull Molecular Donors in Organic Solar Cells. ChemSusChem, 2021, 14, 3622-3631.	6.8	4
54	A triazatruxene-based molecular dyad for single-component organic solar cells. Chemistry Squared, 0, 2, 3.	0.0	4

#	Article	IF	CITATIONS
55	Mechanofluorochromic Material toward a Recoverable Microscale Force Sensor. Advanced Materials Interfaces, 2022, 9, .	3.7	4
56	Synthesis, characterization and use of a POSS-arylamine based push–pull octamer. New Journal of Chemistry, 2021, 45, 6186-6191.	2.8	3
57	Revisiting the synthesis of the benzothioxanthene imide five decades later. New Journal of Chemistry, 2022, 46, 8393-8397.	2.8	3
58	Effect of Chalcogen Incorporation and Rigidification on the Photovoltaic Properties of Simple Arylamineâ€Based Dâ€i€â€A Push–Pull Molecular Systems. ChemPhotoChem, 2022, 6, .	3.0	1