
Vincent Michaud-Belleau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8991589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reaching the True Shot-Noise-Limited Phase Sensitivity in Self-Heterodyne Interferometry. IEEE Journal of Quantum Electronics, 2022, 58, 1-11.	1.9	4
2	Backscattering in antiresonant hollow-core fibers: over 40  dB lower than in standard optical fibers. Optica, 2021, 8, 216.	9.3	41
3	Understanding photodetection nonlinearity in dual-comb interferometry. OSA Continuum, 2021, 4, 2460.	1.8	7
4	Correcting photodetector nonlinearity in dual-comb interferometry. Optics Express, 2021, 29, 29165.	3.4	5
5	Theoretical analysis of backscattering in hollow-core antiresonant fibers. APL Photonics, 2021, 6, .	5.7	10
6	Toward free-running operation of dual-comb fiber lasers for methane sensing. Applied Optics, 2020, 59, B35.	1.8	6
7	Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides. Optics Letters, 2020, 45, 2830.	3.3	23
8	Dual-comb correction with spectrally broadened fiber lasers. , 2020, , .		0
9	External serrodyne modulation for the suppression of low-frequency noise in quadrature interferometry. Optics Letters, 2020, 45, 670.	3.3	2
10	Dual electro-optic comb spectroscopy using quadrature demodulation. , 2020, , .		0
11	Self-Correction Limits in Dual-Comb Interferometry. IEEE Journal of Quantum Electronics, 2019, 55, 1-11.	1.9	25
12	Single-frequency mid-infrared waveguide laser. Optics Express, 2019, 27, 33737.	3.4	2
13	Methane spectroscopy using a free-running chip-based dual-comb laser. Optics Letters, 2019, 44, 4375.	3.3	11
14	Dual electro-optic frequency comb spectroscopy using pseudo-random modulation. Optics Letters, 2019, 44, 4415.	3.3	25
15	An open and flexible digital phase-locked loop for optical metrology. Review of Scientific Instruments, 2018, 89, 093103.	1.3	38
16	Highly coherent free-running dual-comb chip platform. Optics Letters, 2018, 43, 1814.	3.3	19
17	Optimal Detection Scheme for Shot-Noise-Limited Phase Estimation in Passive Classical-Light Interferometry. Physical Review Applied, 2018, 10, .	3.8	6
18	Real-Time Dynamic Atomic Spectroscopy Using Electro-Optic Frequency Combs. Physical Review Applied, 2016, 6, .	3.8	17

#	ARTICLE	IF	CITATIONS
19	Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation. Optics Express, 2015, 23, 27806.	3.4	47
20	All-fiber DFB laser operating at 28  μm. Optics Letters, 2015, 40, 81.	3.3	46