
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8991458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of local adaptation in litter flammability of a widespread fireâ€adaptive pine. Journal of Ecology, 2022, 110, 1138-1148.	4.0	3
2	Hidden Costs of Fire Exclusion in Longleaf Pine Forests Linked to Duff And Carbon Management. Journal of Forestry, 2022, 120, 504-512.	1.0	0
3	Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach. Scientific Reports, 2022, 12, 7384.	3.3	4
4	Mesophication of Oak Landscapes: Evidence, Knowledge Gaps, and Future Research. BioScience, 2021, 71, 531-542.	4.9	59
5	Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, 2021, 5, 504-512.	7.8	41
6	Litter trait driven dampening of flammability following deciduous forest community shifts in eastern North America. Forest Ecology and Management, 2021, 489, 119100.	3.2	14
7	Tree crown injury from wildland fires: causes, measurement and ecological and physiological consequences. New Phytologist, 2021, 231, 1676-1685.	7.3	35
8	Variation in Bark Allocation and Rugosity Across Seven Co-occurring Southeastern US Tree Species. Frontiers in Forests and Global Change, 2021, 4, .	2.3	7
9	Robust projections of future fire probability for the conterminous United States. Science of the Total Environment, 2021, 789, 147872.	8.0	29
10	Fire Ecology and Management in Eastern Broadleaf and Appalachian Forests. Managing Forest Ecosystems, 2021, , 105-147.	0.9	9
11	Fire Ecology and Fire Management of Southeastern Coastal Plain Pine Ecosystems. Managing Forest Ecosystems, 2021, , 63-104.	0.9	Ο
12	Litter Flammability of 50 Southeastern North American Tree Species: Evidence for Mesophication Gradients Across Multiple Ecosystems. Frontiers in Forests and Global Change, 2021, 4, .	2.3	12
13	COVID-19 lockdowns drive decline in active fires in southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
14	Invigorating Prescribed Fire Science Through Improved Reporting Practices. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
15	Long-Duration Soil Heating Resulting from Forest Floor Duff Smoldering in Longleaf Pine Ecosystems. Forest Science, 2020, 66, 291-303.	1.0	13
16	The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Scientific Data, 2020, 7, 194.	5.3	13
17	Reconsidering the fire ecology of the iconic American chestnut. Ecosphere, 2020, 11, e03267.	2.2	8
18	Reviewing Fire, Climate, Deer, and Foundation Species as Drivers of Historically Open Oak and Pine Forests and Transition to Closed Forests. Frontiers in Forests and Global Change, 2020, 3, .	2.3	32

#	Article	IF	CITATIONS
19	Biogeography of fire regimes in western U.S. conifer forests: A traitâ€based approach. Global Ecology and Biogeography, 2020, 29, 944-955.	5.8	82
20	Prescribed fire science: the case for a refined research agenda. Fire Ecology, 2020, 16, .	3.0	104
21	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
22	Post-Fire Tree Mortality. , 2020, , 836-844.		0
23	A large database supports the use of simple models of post-fire tree mortality for thick-barked conifers, with less support for other species. Fire Ecology, 2020, 16, .	3.0	23
24	Resurrecting the Lost Flames of American Chestnut. Ecosystems, 2019, 22, 995-1006.	3.4	17
25	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	185
26	Modelling post-fire tree mortality: Can random forest improve discrimination of imbalanced data?. Ecological Modelling, 2019, 414, 108855.	2.5	29
27	Allometry of the pyrophytic <i>Aristida</i> in fireâ€maintained longleaf pine–wiregrass ecosystems. American Journal of Botany, 2019, 106, 18-28.	1.7	6
28	Resilience of Oregon white oak to reintroduction of fire. Fire Ecology, 2019, 15, .	3.0	3
29	Pyrogenic flowering of <i>Aristida beyrichiana</i> following 50Âyears of fire exclusion. Ecosphere, 2019, 10, e02541.	2.2	8
30	Short- and long-term hydrologic controls on smouldering fire in wetland soils. International Journal of Wildland Fire, 2019, 28, 177.	2.4	11
31	Differential relative bark thickness and aboveground growth discriminates fire resistance among hardwood sprouts in the southern Cascades, California. Trees - Structure and Function, 2019, 33, 267-277.	1.9	9
32	Post-fire Tree Mortality. , 2019, , 1-10.		1
33	Mesophytic litter dampens flammability in fireâ€excluded pyrophytic oak–hickory woodlands. Ecosphere, 2018, 9, e02078.	2.2	60
34	Age and stand structure of oak woodlands along a gradient of conifer encroachment in northwestern California. Ecosphere, 2018, 9, e02446.	2.2	19
35	Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: composition, structure, and position matter. Canadian Journal of Forest Research, 2018, 48, 1331-1342.	1.7	27
36	Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 2018, 13, 113004.	5.2	145

#	Article	IF	CITATIONS
37	An analysis of Southeastern US prescribed burn weather windows: seasonal variability and El Niño associations. International Journal of Wildland Fire, 2018, 27, 176.	2.4	55
38	Embracing Complexity to Advance the Science of Wildland Fire Behavior. Fire, 2018, 1, 20.	2.8	14
39	Do repeated wildfires promote restoration of oak woodlands in mixed-conifer landscapes?. Forest Ecology and Management, 2018, 427, 143-151.	3.2	21
40	Impact of human factors on wildfire occurrence in Mississippi, United States. Forest Policy and Economics, 2017, 81, 38-47.	3.4	24
41	Patterns of Duff Ignition and Smoldering beneath Old Pinus palustris: Influence of Tree Proximity, Moisture Content, and Ignition Vectors. Forest Science, 2017, 63, 165-172.	1.0	9
42	Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western U.S. Forests. Forest Ecology and Management, 2017, 405, 188-199.	3.2	65
43	Fires without tanoak: the effects of a non-native disease on future community flammability. Biological Invasions, 2017, 19, 2307-2317.	2.4	13
44	Implications of sudden oak death for wildland fire management. Forest Phytophthoras, 2017, 7, .	1.0	9
45	Suites of Fire-Adapted traits of Oaks in the Southeastern USA: Multiple Strategies for Persistence. Fire Ecology, 2016, 12, 48-64.	3.0	37
46	Fuel Moisture Differences in a Mixed Native and Non-Native Grassland: Implications for Fire Regimes. Fire Ecology, 2016, 12, 73-87.	3.0	13
47	Fire in Eastern north American Oak Ecosystems: Filling the Gaps. Fire Ecology, 2016, 12, 1-6.	3.0	23
48	Prescribed fire and conifer removal promote positive understorey vegetation responses in oak woodlands. Journal of Applied Ecology, 2016, 53, 1604-1612.	4.0	18
49	Long-term stand dynamics of old-growth mountain longleaf pine (Pinus palustris) woodlands. Forest Ecology and Management, 2016, 364, 154-164.	3.2	13
50	Contingent resistance in longleaf pine (Pinus palustris) growth and defense 10 years following smoldering fires. Forest Ecology and Management, 2016, 364, 130-138.	3.2	18
51	Flammability of the keystone savanna bunchgrass Aristida stricta. Plant Ecology, 2016, 217, 331-342.	1.6	34
52	Finding balance between fire hazard reduction and erosion control in the Lake Tahoe Basin, California–Nevada. Forest Ecology and Management, 2016, 360, 40-51.	3.2	13
53	Contrasting sapling bark allocation of five southeastern USA hardwood tree species in a fire prone ecosystem. Ecosphere, 2015, 6, 1-13.	2.2	41
54	Clarifying the role of fire in the deciduous forests of eastern North America: reply to Matlack. Conservation Biology, 2015, 29, 942-946.	4.7	51

#	Article	IF	CITATIONS
55	The Flammability of Forest and Woodland Litter: a Synthesis. Current Forestry Reports, 2015, 1, 91-99.	7.4	116
56	Altered Community Flammability in Florida's Apalachicola Ravines and Implications for the Persistence of the Endangered Conifer Torreya taxifolia. PLoS ONE, 2014, 9, e103933.	2.5	22
57	Spatial and temporal variability of forest floor duff characteristics in long-unburned <i>Pinus palustris</i> forests. Canadian Journal of Forest Research, 2014, 44, 1477-1486.	1.7	20
58	Longâ€ŧerm effects of fire severity on oak–conifer dynamics in the southern Cascades. Ecological Applications, 2014, 24, 94-107.	3.8	49
59	Fire behavior in masticated fuels: A review. Forest Ecology and Management, 2014, 314, 193-207.	3.2	74
60	Ecological value of retaining pyrophytic oaks in longleaf pine ecosystems. Journal of Wildlife Management, 2014, 78, 383-393.	1.8	76
61	A Mixed-Effects Heterogeneous Negative Binomial Model for Postfire Conifer Regeneration in Northeastern California, USA. Forest Science, 2014, 60, 275-287.	1.0	23
62	Structure and composition of forest floor fuels in long-unburned Jeffrey pine–white fir forests of the Lake Tahoe Basin, USA. International Journal of Wildland Fire, 2014, 23, 363.	2.4	15
63	Spatial, seasonal, and diel forest floor moisture dynamics in Jeffrey pine-white fir forests of the Lake Tahoe Basin, USA. Forest Ecology and Management, 2013, 305, 11-20.	3.2	29
64	Post-fire regeneration across a fire severity gradient in the southern Cascades. Forest Ecology and Management, 2013, 287, 103-112.	3.2	118
65	Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Frontiers in Ecology and the Environment, 2013, 11, e15.	4.0	442
66	Pine cones facilitate ignition of forest floor duff. Canadian Journal of Forest Research, 2013, 43, 512-516.	1.7	13
67	Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology, 2013, 94, 2152-2159.	3.2	57
68	Utility of an Instantaneous Moisture Meter for Duff Moisture Prediction in Long-Unburned Longleaf Pine Forests. Southern Journal of Applied Forestry, 2013, 37, 13-17.	0.3	7
69	Toward a mechanism for eastern North American forest mesophication: differential litter drying across 17 species. Ecological Applications, 2013, 23, 1976-1986.	3.8	110
70	Foliar Consumption across a Sudden Oak Death Chronosequence in Laboratory Fires. Fire Ecology, 2013, 9, 33-44.	3.0	8
71	Patterns of flammability of the California oaks: the role of leaf traits. Canadian Journal of Forest Research, 2012, 42, 1965-1975.	1.7	81
72	Predicting Douglasâ€fir Sapling Mortality Following Prescribed Fire in an Encroached Grassland. Restoration Ecology, 2012, 20, 665-668.	2.9	25

#	Article	IF	CITATIONS
73	California black oak responses to fire severity and native conifer encroachment in the Klamath Mountains. Forest Ecology and Management, 2012, 270, 25-34.	3.2	41
74	Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction. International Journal of Wildland Fire, 2012, 21, 894.	2.4	27
75	Seed Viability and Fire-Related Temperature Treatments in Serotinous California Native Hesperocyparis Species. Fire Ecology, 2012, 8, 107-124.	3.0	12
76	Early-Stage Thinning for the Restoration of Young Redwood—Douglas-Fir Forests in Northern Coastal California, USA. ISRN Ecology, 2012, 2012, 1-9.	1.0	4
77	Behaviour and effects of prescribed fire in masticated fuelbeds. International Journal of Wildland Fire, 2011, 20, 932.	2.4	56
78	Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory. International Journal of Wildland Fire, 2011, 20, 308.	2.4	43
79	Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests. Forest Ecology and Management, 2011, 261, 1973-1986.	3.2	34
80	The Effects of Conifer Encroachment and Overstory Structure on Fuels and Fire in an Oak Woodland Landscape. Fire Ecology, 2011, 7, 32-50.	3.0	60
81	Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest. Applied Vegetation Science, 2010, 13, 207-220.	1.9	46
82	Acute Physiological Stress and Mortality Following Fire in a Long-Unburned Longleaf Pine Ecosystem. Fire Ecology, 2010, 6, 1-12.	3.0	65
83	The effects of sudden oak death on foliar moisture content and crown fire potential in tanoak. Forest Ecology and Management, 2010, 259, 2103-2110.	3.2	32
84	Post-fire tree stress and growth following smoldering duff fires. Forest Ecology and Management, 2009, 258, 2467-2474.	3.2	99
85	Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and south-western Oregon, USA. International Journal of Wildland Fire, 2009, 18, 686.	2.4	68
86	Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape. Forest Ecology and Management, 2008, 254, 85-95.	3.2	46
87	The burning characteristics of southeastern oaks: Discriminating fire facilitators from fire impeders. Forest Ecology and Management, 2008, 256, 2039-2045.	3.2	135
88	Overstory tree mortality resulting from reintroducing fire to long-unburned longleaf pine forests: the importance of duff moisture. Canadian Journal of Forest Research, 2007, 37, 1349-1358.	1.7	93
89	Characteristics of Sap Trees Used by Overwintering Sphyrapicus varius (Yellow-bellied Sapsuckers) in an Old-growth Pine Forest. Southeastern Naturalist, 2006, 5, 127-134.	0.4	10
90	Restoring Fire to Long-Unburned Pinus palustris Ecosystems: Novel Fire Effects and Consequences for Long-Unburned Ecosystems. Restoration Ecology, 2005, 13, 536-544.	2.9	190