Hiroshi Tsutsumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8991069/publications.pdf

Version: 2024-02-01

		393982	360668
51	1,306 citations	19	35
papers	citations	h-index	g-index
5 0	5 0	F.0	1.000
53	53	53	1683
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One-Pot and Sequential Organic Chemistry on an Enzyme Surface to Tether a Fluorescent Probe at the Proximity of the Active Site with Restoring Enzyme Activity. Journal of the American Chemical Society, 2006, 128, 3273-3280.	6.6	120
2	Effective Disruption of Phosphoproteinâ^'Protein Surface Interaction Using Zn(II) Dipicolylamine-Based Artificial Receptors via Two-Point Interaction. Journal of the American Chemical Society, 2006, 128, 2052-2058.	6.6	88
3	Suzuki coupling for protein modification. Tetrahedron Letters, 2005, 46, 3301-3305.	0.7	85
4	Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 391-399.	2.0	83
5	Cell penetration and cell-selective drug delivery using \hat{l}_{\pm} -helix peptides conjugated with gold nanoparticles. Biomaterials, 2013, 34, 4872-4879.	5.7	54
6	Identification of a New Class of Low Molecular Weight Antagonists against the Chemokine Receptor CXCR4 Having the Dipicolylamineâ^'Zinc(II) Complex Structure. Journal of Medicinal Chemistry, 2006, 49, 3412-3415.	2.9	51
7	Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents. Biopolymers, 2007, 88, 279-289.	1.2	50
8	Cell-selective intracellular drug delivery using doxorubicin and \hat{l}_{\pm} -helical peptides conjugated to gold nanoparticles. Biomaterials, 2014, 35, 3480-3487.	5.7	46
9	Molecular Basis of Recognition of Antibacterial Porphyrins by Heme-Transporter IsdH-NEAT3 of Staphylococcus aureus. Biochemistry, 2011, 50, 7311-7320.	1.2	44
10	Fluorophore Labeling Enables Imaging and Evaluation of Specific CXCR4â^'Ligand Interaction at the Cell Membrane for Fluorescence-Based Screening. Bioconjugate Chemistry, 2008, 19, 1917-1920.	1.8	42
11	Development of Low Molecular Weight CXCR4 Antagonists by Exploratory Structural Tuning of Cyclic Tetra- and Pentapeptide-Scaffolds Towards the Treatment of HIV Infection, Cancer Metastasis and Rheumatoid Arthritis. Current Medicinal Chemistry, 2007, 14, 93-102.	1.2	41
12	Cell-adhesive hydrogels composed of peptide nanofibers responsive to biological ions. Polymer Journal, 2012, 44, 651-657.	1.3	40
13	Peptide HIV-1 Integrase Inhibitors from HIV-1 Gene Products. Journal of Medicinal Chemistry, 2010, 53, 5356-5360.	2.9	37
14	A monosaccharide-modified peptide phage library for screening of ligands to carbohydrate-binding proteins. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4940-4943.	1.0	37
15	Soft materials based on designed self-assembling peptides: from design to application. Molecular BioSystems, 2013, 9, 609.	2.9	33
16	Fluorogenically Active Leucine Zipper Peptides as Tag–Probe Pairs for Protein Imaging in Living Cells. Angewandte Chemie - International Edition, 2009, 48, 9164-9166.	7.2	32
17	Structure–activity relationship studies on CXCR4 antagonists having cyclic pentapeptide scaffolds. Organic and Biomolecular Chemistry, 2005, 3, 4392.	1.5	31
18	Interaction of amphiphilic \hat{l} ±-helical cell-penetrating peptides with heparan sulfate. Organic and Biomolecular Chemistry, 2014, 12, 4673.	1.5	29

#	Article	IF	CITATIONS
19	Development of a linear type of low molecular weight CXCR4 antagonists based on T140 analogs. Organic and Biomolecular Chemistry, 2006, 4, 2354.	1.5	28
20	Gold nanoparticles conjugated with monosaccharide-modified peptide for lectin detection. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6825-6827.	1.0	20
21	Selective binding of antimicrobial porphyrins to the hemeâ€receptor IsdHâ€NEAT3 of <i>Staphylococcus aureus</i> . Protein Science, 2013, 22, 942-953.	3.1	20
22	Rate enhancement and enantioselectivity in ester hydrolysis catalysed by cyclodextrin–peptide hybrids. Perkin Transactions II RSC, 2000, , 1813-1818.	1.1	19
23	Enantioselective ester hydrolysis catalyzed by \hat{l}^2 -cyclodextrin conjugated with \hat{l}^2 -hairpin peptides. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 723-726.	1.0	19
24	Structure-activity relationship study of CXCR4 antagonists bearing the cyclic pentapeptide scaffold: identification of the new pharmacophore. Organic and Biomolecular Chemistry, 2008, 6, 4374.	1.5	19
25	Peptidic HIV integrase inhibitors derived from HIV gene products: Structure–activity relationship studies. Bioorganic and Medicinal Chemistry, 2010, 18, 6771-6775.	1.4	19
26	Cyclodextrin–peptide hybrid as a hydrolytic catalyst having multiple functional groups. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 741-743.	1.0	17
27	The Chemokine Receptor CXCR4 as a Therapeutic Target for Several Diseases. Mini-Reviews in Medicinal Chemistry, 2006, 6, 989-995.	1.1	16
28	Development of crosslinkâ€type tagâ€probe pairs for fluorescent imaging of proteins. Biopolymers, 2010, 94, 843-852.	1.2	16
29	Construction of a Stapled α-Helix Peptide Library Displayed on Phage for the Screening of Galectin-3-Binding Peptide Ligands. ACS Omega, 2020, 5, 5666-5674.	1.6	16
30	Selfâ€assembling peptide nanofibers promoting cell adhesion and differentiation. Biopolymers, 2013, 100, 731-737.	1.2	15
31	Osteoblastic differentiation on hydrogels fabricated from Ca2+-responsive self-assembling peptides functionalized with bioactive peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 3126-3132.	1.4	15
32	Cell differentiation on disk―and stringâ€shaped hydrogels fabricated from Ca ²⁺ â€responsive selfâ€assembling peptides. Biopolymers, 2016, 106, 476-483.	1.2	14
33	Intense Blue Fluorescence in a Leucine Zipper Assembly. ChemBioChem, 2011, 12, 691-694.	1.3	11
34	Screening for concanavalin A binders from a mannose-modified \hat{l}_{\pm} -helix peptide phage library. Molecular BioSystems, 2017, 13, 2222-2225.	2.9	10
35	Versatile use of acid-catalyzed ring-opening of \hat{l}^2 -aziridinyl- $\hat{l}\pm,\hat{l}^2$ -enoates to stereoselective synthesis of peptidomimetics. Tetrahedron, 2007, 63, 9243-9254.	1.0	9
36	Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nature Communications, 2021, 12, 3412.	5.8	9

3

#	Article	IF	Citations
37	hDM2 protein-binding peptides screened from stapled α-helical peptide phage display libraries with different types of staple linkers. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127605.	1.0	8
38	Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorganic and Medicinal Chemistry, 2021, 46, 116345.	1.4	8
39	A future perspective on the development of chemokine receptor CXCR4 antagonists. Expert Opinion on Drug Discovery, 2008, 3, 1155-1166.	2.5	6
40	Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface. Protein and Peptide Letters, 2018, 25, 84-89.	0.4	6
41	Functionalization of self-assembling peptide materials using molecular recognition of supramolecular peptide nanofibers. Polymer Journal, 2020, 52, 913-922.	1.3	6
42	Short selfâ€assembling peptides with a urea bond: A new type of supramolecular peptide hydrogel materials. Peptide Science, 2021, 113, e24214.	1.0	5
43	Selection of fluorescent biosensors against galectin-3 from an NBD-modified phage library displaying designed α-helical peptides. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127835.	1.0	5
44	Specific Probes for Chemokine Receptors. Chemistry and Biology, 2006, 13, 8-10.	6.2	4
45	Exploratory Studies on Development of the Chemokine Receptor CXCR4 Antagonists toward Downsizing. Perspectives in Medicinal Chemistry, 2008, 2, PMC.S422.	4.6	3
46	Antiâ€HIVâ€1 Peptide Derivatives Based on the HIVâ€1 Coâ€receptor CXCR4. ChemMedChem, 2013, 8, 166	58 :16 72.	3
47	Dihydrofolate reductase inhibitory peptides screened from a structured designed \hat{l}^2 -loop peptide library displayed on phage. Molecular BioSystems, 2015, 11, 2713-2716.	2.9	3
48	Development of Nano- and Bio-Materials Using Nanofibers Fabricated from Self-Assembling Peptides. Kobunshi Ronbunshu, 2017, 74, 162-171.	0.2	2
49	Development of Chemokine Receptor CXCR4 Antagonists Using Bio-mimetic Strategy. Advances in Experimental Medicine and Biology, 2009, 611, 145-146.	0.8	2
50	Inhibitors of the Chemokine Receptor CXCR4: Chemotherapy of AIDS, Metastatic Cancer, Leukemia and Rheumatoid Arthritis. Letters in Drug Design and Discovery, 2007, 4, 20-26.	0.4	1
51	A Computational Study of the Interaction of Amphiphilic \hat{l}_{\pm} -Helical Cell-Penetrating Peptides with Heparan Sulfate. Bulletin of the Chemical Society of Japan, 2014, 87, 1074-1082.	2.0	1