Jaroslav Julak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges. Molecules, 2022, 27, 238.	1.7	4
2	Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties. Plants, 2022, 11, 1471.	1.6	12
3	Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants—A Review. Plants, 2021, 10, 1616.	1.6	34
4	Inactivation of Dermatophytes Causing Onychomycosis Using Non-Thermal Plasma as a Prerequisite for Therapy. Journal of Fungi (Basel, Switzerland), 2021, 7, 715.	1.5	4
5	Inactivation of Acanthamoeba Cysts in Suspension and on Contaminated Contact Lenses Using Non-Thermal Plasma. Microorganisms, 2021, 9, 1879.	1.6	0
6	Inactivation of Schistosoma Using Low-Temperature Plasma. Microorganisms, 2021, 9, 32.	1.6	3
7	Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Frontiers in Microbiology, 2021, 12, 737635.	1.5	28
8	A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods, 2021, 10, 2927.	1.9	11
9	Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms. World Journal of Microbiology and Biotechnology, 2020, 36, 108.	1.7	8
10	Inactivation of Dermatophytes Causing Onychomycosis and Its Therapy Using Non-Thermal Plasma. Journal of Fungi (Basel, Switzerland), 2020, 6, 214.	1.5	9
11	Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiologica, 2020, 65, 863-869.	1.1	7
12	Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. PeerJ, 2020, 8, e10259.	0.9	34
13	Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in <i>Pseudomonas aeruginosa</i> : Difference between non-hospital and clinical isolates. AIP Advances, 2019, 9, .	0.6	13
14	Effects of Nonthermal Plasma on Wheat Grains and Products. Journal of Food Quality, 2019, 2019, 1-10.	1.4	45
15	Nonâ€ŧhermal plasmaâ€induced apoptosis in yeast <i>Saccharomyces cerevisiae</i> . Contributions To Plasma Physics, 2019, 59, e201800064.	0.5	11
16	Prevention of biofilm reâ€development on Tiâ€6Alâ€4V alloy by cometary discharge with a metallic grid. Contributions To Plasma Physics, 2019, 59, 166-172.	0.5	11
17	Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Science and Technology, 2018, 27, 065002.	1.3	31
18	Contribution to the Chemistry of Plasma-Activated Water. Plasma Physics Reports, 2018, 44, 125-136.	0.3	84

JAROSLAV JULAK

#	Article	IF	CITATIONS
19	Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiologica, 2018, 63, 63-68.	1.1	21
20	Medically important biofilms and non-thermal plasma. World Journal of Microbiology and Biotechnology, 2018, 34, 178.	1.7	29
21	Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Physics Reports, 2018, 44, 799-804.	0.3	28
22	Inactivation of dermatophyte infection by nonthermal plasma on animal model. Medical Mycology, 2016, 55, myw094.	0.3	11
23	Inactivation of human pathogenic dermatophytes by non-thermal plasma. Journal of Microbiological Methods, 2015, 119, 53-58.	0.7	14
24	Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 2015, 33, 1108-1119.	6.0	463
25	Treatment of a Superficial Mycosis by Low-temperature Plasma: A Case Report. Prague Medical Report, 2014, 115, 73-78.	0.4	12
26	Immunomodulatory properties of subcellular fractions of a G+ bacterium, Bacillus firmus. Folia Microbiologica, 2013, 58, 111-121.	1.1	1
27	Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clinical Plasma Medicine, 2013, 1, 31-34.	3.2	29
28	Microbial Inactivation by Electric Discharge with Metallic Grid. Acta Physica Polonica A, 2013, 124, 62-65.	0.2	18
29	The persistent microbicidal effect in water exposed to the corona discharge. Physica Medica, 2012, 28, 230-239.	0.4	86
30	The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiologica, 2011, 56, 77-79.	1.1	35
31	Inactivation of Prions Using Electrical DC Discharges at Atmospheric Pressure and Ambient Temperature. Plasma Processes and Polymers, 2011, 8, 316-323.	1.6	47
32	The Influence of Parameters of Stabilized Corona Discharge on its Microbicidal Effect. Acta Physica Polonica A, 2011, 119, 803-806.	0.2	12
33	The Determination of Microbicidal Effects of Corona Discharge Using the Image Analysis. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 227-231.	0.4	0
34	Adjuvant effect of Bacillus firmus on the expression of cytokines and toll-like receptors in mouse nasopharynx-associated lymphoid tissue (NALT) after intranasal immunization with inactivated influenza virus type A. Immunology Letters, 2010, 134, 26-34.	1.1	9
35	The Microbicidal Effect of Lowâ€Temperature Plasma Generated by Corona Discharge: Comparison of Various Microorganisms on an Agar Surface or in Aqueous Suspension. Plasma Processes and Polymers, 2010, 7, 237-243.	1.6	86
36	Plasma Jetlike Point-to-Point Electrical Discharge in Air and Its Bactericidal Properties. IEEE Transactions on Plasma Science, 2010, 38, 1978-1980.	0.6	24

JAROSLAV JULAK

#	Article	IF	CITATIONS
37	Stimulation of protective and cross-protective immunity against influenza B virus after adjuvant mucosal immunization of mice. Folia Microbiologica, 2009, 54, 549-552.	1.1	4
38	Protective and cross-protective mucosal immunization of mice by influenza virus type A with bacterial adjuvant. Immunology Letters, 2008, 115, 144-152.	1.1	11
39	Bronchoalveolar lavage examined by solid phase microextraction, gas chromatography–mass spectrometry and selected ion flow tube mass spectrometry. Journal of Microbiological Methods, 2006, 65, 76-86.	0.7	32
40	Corona discharge: A simple method of its generation and study of its bactericidal properties. European Physical Journal D, 2006, 56, B1333-B1338.	0.4	32
41	lmmune response after adjuvant mucosal immunization of mice with inactivated influenza virus. Immunology Letters, 2005, 97, 251-259.	1.1	15
42	Intratracheal and intranasal immunization with ovalbumin conjugated withBacillus firmus as a carrier in mice. Folia Microbiologica, 2005, 50, 247-253.	1.1	5
43	Evaluation of exudates by solid phase microextraction–gas chromatography. Journal of Microbiological Methods, 2003, 52, 115-122.	0.7	32
44	Immunostimulatory effect ofBacillus firmus on mouse lymphocytes. Folia Microbiologica, 2002, 47, 193-197.	1.1	15
45	Polyclonal activation of human lymphocytes byBacillus firmus and its constituents. Folia Microbiologica, 1995, 40, 647-651.	1.1	5
46	Resistance to infection and activation of the monocyto-macrophage system caused byBacillus firmus and its fractions. Folia Microbiologica, 1994, 39, 147-151.	1.1	13
47	Effect ofBacillus firmus and other sporulating aerobic microorganisms onin vitro stimulation of human lymphocytes. A comparative study. Folia Microbiologica, 1994, 39, 501-504.	1.1	23
48	Effect of crude bacterial lipids on the course ofListeria infection in mice. Folia Microbiologica, 1992, 37, 455-460.	1.1	16
49	Membrane fluidity inBacillus subtilis. Validity of homeoviscous adaptation. Folia Microbiologica, 1988, 33, 170-177.	1.1	16
50	Fatty acid composition of a propionibacterium acnes vaccine and its relationship to immunostimulatory activity. Zentralblatt Fur Bakteriologie, Mikrobiologie, Und Hygiene Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 1984, 258, 296-309.	0.5	3
51	Composition of cellular fatty acids in unidentified non-pathogenic corynebacteria. Folia Microbiologica, 1982, 27, 191-194.	1.1	Ο
52	A lipopolysaccharide fromAspergillus flavus conidia. Folia Microbiologica, 1981, 26, 212-216.	1.1	3
53	Effect of glucose on the biochemical properties of the bacterial cytoplasmic membrane. Folia Microbiologica, 1980, 25, 457-463.	1.1	1
54	Identification of characteristic branched-chain fatty acids of Mycobacterium kansasii and gordonae by gas chromatography-mass spectrometry. Journal of Chromatography A, 1980, 190, 183-187.	1.8	28

JAROSLAV JULAK

#	Article	IF	CITATIONS
55	The syntheses of methyl esters of pentadeconic acids with double branched chain. Collection of Czechoslovak Chemical Communications, 1979, 44, 3111-3118.	1.0	3
56	Contribution to the taxonomy of haemolytic corynebacteria. Folia Microbiologica, 1978, 23, 229-235.	1.1	5
57	Thermische Zersetzung von Perjodaten der Metalle der II. A-Gruppe. Paramagnetismus der bei der thermischen Perjodatzersetzung anfallenden Zwischenprodukte. Collection of Czechoslovak Chemical Communications, 1972, 37, 1247-1260.	1.0	4
58	Investigation of the thermal decomposition of some periodates by means of emanation thermal analysis (ETA) and DTA. Journal of Thermal Analysis, 1972, 4, 293-298.	0.7	4
59	Kristallines Bariumjodat(VI) und seine magnetischen Eigenschaften. Collection of Czechoslovak Chemical Communications, 1967, 32, 3977-3986.	1.0	2