Jean-Louis Vercher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990674/publications.pdf

Version: 2024-02-01

 Individual movement features during prism adaptation correlate with after-effects and interlimb Individual movement features during prism adaptation correlate with after-effects and interlimb How do hoverflies use their righting reflex?. Journal of Experimental Biology, 2020, 223, . Long automated driving phase affects takeâ€over performance. IET Intelligent Transport Systems, 2019, 13, 1249-1255. Detection and prediction of driver drowsiness using artificial neural network models. Accident Misperception of egocentric distances in virtual environments: More a question of training than a 	5 9 25 162 13
 How do hoverflies use their righting reflex?. Journal of Experimental Biology, 2020, 223, . Long automated driving phase affects takeâ€over performance. IET Intelligent Transport Systems, 2019, 13, 1249-1255. Detection and prediction of driver drowsiness using artificial neural network models. Accident Analysis and Prevention, 2019, 126, 95-104. Misperception of egocentric distances in virtual environments: More a question of training than a 37 	9 25 162 13
3 Long automated driving phase affects takeâ€over performance. IET Intelligent Transport Systems, 2019, 13, 1249-1255. 3.0 4 Detection and prediction of driver drowsiness using artificial neural network models. Accident Analysis and Prevention, 2019, 126, 95-104. 5.7 5 Misperception of egocentric distances in virtual environments: More a question of training than a 3.7	25 162 13
 Detection and prediction of driver drowsiness using artificial neural network models. Accident Misperception of egocentric distances in virtual environments: More a question of training than a 3.7 	162 13
Misperception of egocentric distances in virtual environments: More a question of training than a	13
technological issue?. Displays, 2018, 52, 8-20.	
6Adapting artificial neural networks to a specific driver enhances detection and prediction of drowsiness. Accident Analysis and Prevention, 2018, 121, 118-128.5.7	47
 Role of the light source position in freely falling hoverflies' stabilization performances. Biology 2.3 Letters, 2018, 14, 20180051. 	7
8 Modeling visual-based pitch, lift and speed control strategies in hoverflies. PLoS Computational 3.2 Biology, 2018, 14, e1005894.	7
9 Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity. Frontiers in Physiology, 2017, 8, 821. 2.8	21
10Generalization of force-field adaptation in proprioceptively-deafferented subjects. Neuroscience Letters, 2016, 616, 160-165.2.1	23
11Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.2.311Neuroscience, 2016, 327, 125-135.	14
12To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?.1.712Journal of Experimental Biology, 2016, 219, 2497-2503.1.7	13
Cognitive Workload and Psychophysiological Parameters During Multitask Activity in Helicopter Pilots. Aerospace Medicine and Human Performance, 2015, 86, 1052-1057.	9
Does virtual reality affect visual perception of egocentric distance?. , 2015, , .	2
¹⁵ Behavioural evidence for a visual and proprioceptive control of head roll in hoverflies (<i>Episyrphus balteatus</i> , Dipteran). Journal of Experimental Biology, 2015, 218, 3777-87.	14
16To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning. Journal of Neurophysiology, 2015, 114, 2764-2774.1.8	41
Effectiveness of Physiological and Psychological Features to Estimate Helicopter Pilots' Workload: A Bayesian Network Approach. IEEE Transactions on Intelligent Transportation Systems, 2013, 14, 8.0 1872-1881.	20

18 Chapitre 2. Sensorimotricit \tilde{A} \mathbb{O} et performance motrice. , 2012, , 71-99.

#	Article	IF	CITATIONS
19	Improving the realism in motion-based driving simulators by adapting tilt-translation technique to human perception. , 2011, , .		7
20	Hand–eye coordination relies on extra-retinal signals: Evidence from reactive saccade adaptation. Behavioural Brain Research, 2011, 218, 248-252.	2.2	5
21	Does tilt/translation ratio affect perception of deceleration in driving simulators?. Journal of Vestibular Research: Equilibrium and Orientation, 2011, 21, 127-139.	2.0	7
22	Ergonomic and gesture performance of robotized instruments for laparoscopic surgery. , 2011, , .		8
23	Bayesian networks and information theory for audio-visual perception modeling. Biological Cybernetics, 2010, 103, 213-226.	1.3	18
24	Force-field adaptation without proprioception: Can vision be used to model limb dynamics?. Neuropsychologia, 2010, 48, 60-67.	1.6	80
25	Pitch body orientation influences the perception of self-motion direction induced by optic flow. Neuroscience Letters, 2010, 482, 193-197.	2.1	12
26	Eye-Hand Coordination in Rhythmical Pointing. Journal of Motor Behavior, 2009, 41, 294-304.	0.9	16
27	Influence of gaze elevation on estimating the possibility of passing under high obstacles during body tilt. Experimental Brain Research, 2009, 193, 19-28.	1.5	3
28	Adaptation of reactive and voluntary saccades: different patterns of adaptation revealed in the antisaccade task. Journal of Physiology, 2009, 587, 127-138.	2.9	42
29	Judging beforehand the possibility of passing under obstacles without motion: the influence of egocentric and geocentric frames of reference. Experimental Brain Research, 2008, 185, 673-680.	1.5	10
30	Coupling kinematics of memory and kinematics of movement: The conditions for a psychological relativity. Human Movement Science, 2008, 27, 532-550.	1.4	0
31	How does practise of internal Chinese martial arts influence postural reaction control?. Journal of Sports Sciences, 2008, 26, 629-642.	2.0	11
32	Modelling Gait Processes as a Combination of Sensory-motor and Cognitive Controls in an Attempt to Describe Accidents on the Level in Occupational Situations. Industrial Health, 2008, 46, 3-14.	1.0	6
33	Coordination of Upper and Lower Body during Balance Recovery following a Support Translation. Perceptual and Motor Skills, 2007, 105, 715-732.	1.3	7
34	Adaptation of Voluntary Saccades, But Not of Reactive Saccades, Transfers to Hand Pointing Movements. Journal of Neurophysiology, 2007, 98, 602-612.	1.8	63
35	Oculomotor plasticity: Are mechanisms of adaptation for reactive and voluntary saccades separate?. Brain Research, 2007, 1135, 107-121.	2.2	73
36	Adaptive control: A review of the ability to acquire and maintain high sensorimotor performance. Computers in Biology and Medicine, 2007, 37, 989-1000.	7.0	6

#	Article	IF	CITATIONS
37	Internally driven control of reaching movements: A study on a proprioceptively deafferented subject. Brain Research Bulletin, 2006, 69, 404-415.	3.0	101
38	Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment. Brain Research Bulletin, 2006, 71, 101-110.	3.0	11
39	The contribution of proprioceptive feedback to sensorimotor adaptation. Experimental Brain Research, 2006, 174, 45-52.	1.5	65
40	Fusion of Visuo-ocular and Vestibular Signals in Arm Motor Control. Journal of Neurophysiology, 2006, 95, 1134-1146.	1.8	12
41	Accuracy of spatial localization depending on head posture in a perturbed gravitoinertial force field. Experimental Brain Research, 2005, 161, 432-440.	1.5	10
42	On the nature of the vestibular control of arm-reaching movements during whole-body rotations. Experimental Brain Research, 2005, 164, 431-441.	1.5	38
43	Dissociation between subjective vertical and subjective body orientation elicited by galvanic vestibular stimulation. Brain Research Bulletin, 2005, 65, 77-86.	3.0	25
44	Wrist vibration affects the production of finely graded forces. Aviation, Space, and Environmental Medicine, 2005, 76, 435-40.	0.5	7
45	Perception of the vertical with a head-mounted visual frame during head tilt. Ergonomics, 2004, 47, 1116-1130.	2.1	13
46	Online control of the direction of rapid reaching movements. Experimental Brain Research, 2004, 157, 468-71.	1.5	74
47	From head orientation to hand control: evidence of both neck and vestibular involvement in hand drawing. Experimental Brain Research, 2003, 150, 40-49.	1.5	26
48	Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 2003, 151, 524-535.	1.5	156
49	Role of sensory information in updating internal models of the effector during arm tracking. Progress in Brain Research, 2003, 142, 203-222.	1.4	48
50	On-line versus off-line vestibular-evoked control of goal-directed arm movements. NeuroReport, 2002, 13, 1563-1566.	1.2	29
51	Galvanic vestibular stimulation in humans produces online arm movement deviations when reaching towards memorized visual targets. Neuroscience Letters, 2002, 318, 34-38.	2.1	60
52	Visual signals contribute to the coding of gaze direction. Experimental Brain Research, 2002, 144, 281-292.	1.5	24
53	Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects. Neuroscience Letters, 2001, 301, 25-28.	2.1	22
54	Supramodal effects of galvanic vestibular stimulation on the subjective vertical. NeuroReport, 2001, 12, 2991-2994.	1.2	41

4

#	Article	IF	CITATIONS
55	The role of proprioception and attention in a visuomotor adaptation task. Experimental Brain Research, 2000, 132, 114-126.	1.5	154
56	The oculomanual coordination control center takes into account the mechanical properties of the arm. Experimental Brain Research, 1999, 124, 42-52.	1.5	36
57	Does the oculo-manual co-ordination control system use an internal model of the arm dynamics?. Neuroscience Letters, 1999, 265, 139-142.	2.1	22
58	Opposing Resistance to the Head Movement Does not Affect Space Perception During Head Rotations. , 1999, , 193-201.		3
59	Updating visual space during passive and voluntary head-in-space movements. Experimental Brain Research, 1998, 122, 93-100.	1.5	41
60	Adaptation in Visuomanual Tracking Depends on Intact Proprioception. Journal of Motor Behavior, 1998, 30, 234-248.	0.9	25
61	The Role of Ocular Muscle Proprioception During Modifications in Smooth Pursuit Output. Vision Research, 1997, 37, 769-774.	1.4	19
62	Role of arm proprioception in calibrating the arm-eye temporal coordination. Neuroscience Letters, 1997, 237, 109-112.	2.1	15
63	Visual Object Localization through Vestibular and Neck Inputs. 2: Updating Off-Mid-Sagittal-Plane Target Positions. Journal of Vestibular Research: Equilibrium and Orientation, 1997, 7, 137-143.	2.0	8
64	Manuo-ocular coordination in target tracking. I. A model simulating human performance. Biological Cybernetics, 1997, 77, 257-266.	1.3	40
65	Manuo-ocular coordination in target tracking. II. Comparing the model with human behavior. Biological Cybernetics, 1997, 77, 267-275.	1.3	21
66	Integrating Reflexes and Voluntary Behaviours: Coordination and Adaptation Controls in Man. , 1997, , 189-205.		1
67	Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination. Journal of Neurophysiology, 1996, 76, 1133-1144.	1.8	59
68	The relative contribution of retinal and extraretinal signals in determining the accuracy of reaching movements in normal subjects and a deafferented patient. Experimental Brain Research, 1996, 109, 148-53.	1.5	25
69	Changes in Saccadic and Manual Motor Control After Ocular Smooth Pursuit Adaptive Modifications. Journal of Motor Behavior, 1996, 28, 315-323.	0.9	6
70	Encoding the position of a flashed visual target after passive body rotations. NeuroReport, 1995, 6, 1165-1168.	1.2	30
71	Evaluation of saccahc eye movements as an objective test of recovery from anaesthesia. Acta Anaesthesiologica Scandinavica, 1995, 39, 1117-1124.	1.6	13
72	Egocentric visual target position and velocity coding: Role of ocular muscle proprioception. Annals of Biomedical Engineering, 1995, 23, 423-435.	2.5	13

#	Article	IF	CITATIONS
73	Perception of passive whole-body rotations in the absence of neck and body proprioception. Journal of Neurophysiology, 1995, 74, 2216-2219.	1.8	42
74	Acquisition of Spatial Knowledge Through Visual Exploration of Simulated Environments. Ecological Psychology, 1995, 7, 1-20.	1.1	169
75	Failure to Update the Egocentric Representation of the Visual Space Through Labyrinthine Signal. Brain and Cognition, 1995, 29, 1-22.	1.8	37
76	Internal representation of gaze direction with and without retinal inputs in man. Neuroscience Letters, 1995, 183, 187-189.	2.1	18
77	HUMAN OPERATOR ADAPTATION TO A NEW VISUO-MANUAL RELATIONSHIP. , 1995, , 437-442.		1
78	Visual Target Velocity Coding through Ocular Muscle Proprioception. , 1995, , 550-553.		0
79	Changes in ocular alignment and pointing accuracy after sustained passive rotation of one eye. Vision Research, 1994, 34, 2613-2627.	1.4	27
80	GABAâ€ergic control of visual perception in healthy volunteers: effects of midazolam, a benzodiazepine, on spatioâ€ŧemporal contrast sensitivity British Journal of Clinical Pharmacology, 1993, 36, 117-124.	2.4	21
81	Identification of Peripheral Visual Images in a Laterally Restricted Gaze Field. , 1992, , 439-442.		0
82	OCULAR MUSCLE PROPRIOCEPTION AND VISUAL LOCALIZATION OF TARGETS IN MAN. Brain, 1990, 113, 1857-1871.	7.6	65
83	The role of ocular muscle proprioception in visual localization of targets. Science, 1990, 249, 58-61.	12.6	138
84	Pyridostigmine-induced inhibition of blood acetylcholinesterase (AChE) and resulting effects on manual ocular tracking performance in the trained baboon. Behavioral and Neural Biology, 1990, 53, 411-427.	2.2	1
85	Mechanisms of short-term saccadic adaptation Journal of Experimental Psychology: Human Perception and Performance, 1989, 15, 249-258.	0.9	74
86	Oculo-manual tracking of visual targets: control learning, coordination control and coordination model. Experimental Brain Research, 1988, 73, 127-137.	1.5	126
87	Cerebellar involvement in the coordination control of the oculo-manual tracking system: effects of cerebellar dentate nucleus lesion. Experimental Brain Research, 1988, 73, 155-166.	1.5	92
88	Release of acetylcholinesterase from the guinea-pig cerebellum in vivo. Neuroscience, 1988, 25, 133-138.	2.3	39