Sven Heiles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990598/publications.pdf Version: 2024-02-01

SVEN HELLES

#	Article	IF	CITATIONS
1	Venom Gland Mass Spectrometry Imaging of Saw-Scaled Viper, <i>Echis carinatus sochureki</i> , at High Lateral Resolution. Journal of the American Society for Mass Spectrometry, 2021, 32, 1105-1115.	1.2	6
2	Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Analytical and Bioanalytical Chemistry, 2021, 413, 5927-5948.	1.9	61
3	Influence of protein ion charge state on 213 nm top-down UVPD. Analyst, The, 2021, 146, 3977-3987.	1.7	11
4	Implementation of a High-Repetition-Rate Laser in an AP-SMALDI MSI System for Enhanced Measurement Performance. Journal of the American Society for Mass Spectrometry, 2021, 32, 465-472.	1.2	15
5	IRMPD Spectroscopy of [PC (4:0/4:0) + M] ⁺ (M = H, Na, K) and Corresponding CID Fragment Ions. Journal of the American Society for Mass Spectrometry, 2021, 32, 2874-2884.	1.2	9
6	Atmospheric-Pressure MALDI Mass Spectrometry Imaging at 213 nm Laser Wavelength. Journal of the American Society for Mass Spectrometry, 2020, 31, 326-335.	1.2	11
7	Impact of Aliovalent/Isovalent Ions (Gd, Zr, Pr, and Tb) on the Catalytic Stability of Mesoporous Ceria in the HCl Oxidation Reaction. ACS Applied Nano Materials, 2020, 3, 7406-7419.	2.4	9
8	Multifunctional Reactive MALDI Matrix Enabling High-Lateral Resolution Dual Polarity MS Imaging and Lipid Câ•€ Position-Resolved MS ² Imaging. Analytical Chemistry, 2020, 92, 14130-14138.	3.2	44
9	Investigating C positions and hydroxylation sites in lipids using Paternò–Büchi functionalization mass spectrometry. Analyst, The, 2020, 145, 2256-2266.	1.7	21
10	Reactive Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using an Intrinsically Photoreactive Paternò–Büchi Matrix for Double-Bond Localization in Isomeric Phospholipids. Journal of the American Chemical Society, 2019, 141, 11816-11820.	6.6	112
11	Industrial Riboflavin Fermentation Broths Represent a Diverse Source of Natural Saturated and Unsaturated Lactones. Journal of Agricultural and Food Chemistry, 2019, 67, 13460-13469.	2.4	10
12	Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging. Annual Review of Analytical Chemistry, 2019, 12, 201-224.	2.8	131
13	Olefinic reagents tested for peptide derivatization with switchable properties: Stable upon collision induced dissociation and cleavable by inâ€source Paternòâ€Büchi reactions. Journal of Mass Spectrometry, 2019, 54, 976-986.	0.7	1
14	Trendbericht: Analytische Chemie 2016/2017. Nachrichten Aus Der Chemie, 2018, 66, 389-399.	0.0	0
15	Effects of wavelength, fluence, and dose on fragmentation pathways and photoproduct ion yield in 213 nm and 266 nm ultraviolet photodissociation experiments. European Journal of Mass Spectrometry, 2018, 24, 54-65.	0.5	7
16	Relative Quantification of Phosphatidylcholine <i>sn</i> -Isomers Using Positive Doubly Charged Lipid–Metal Ion Complexes. Analytical Chemistry, 2018, 90, 11486-11494.	3.2	37
17	Competition between salt bridge and non-zwitterionic structures in deprotonated amino acid dimers. Physical Chemistry Chemical Physics, 2018, 20, 15641-15652.	1.3	10
18	Analysis of ketone-based neurosteroids by reactive low temperature plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1439-1450.	0.7	4

Sven Heiles

#	Article	IF	CITATIONS
19	Charging and Charge Switching of Unsaturated Lipids and Apolar Compounds Using Paternò-Büchi Reactions. Journal of the American Society for Mass Spectrometry, 2018, 29, 1971-1980.	1.2	52
20	Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules. Chemical Science, 2017, 8, 2973-2982.	3.7	12
21	Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nature Methods, 2017, 14, 1156-1158.	9.0	114
22	Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nature Methods, 2017, 14, 90-96.	9.0	424
23	Selective phosphatidylcholine double bond fragmentation and localisation using Paternò–Büchi reactions and ultraviolet photodissociation. Analyst, The, 2017, 142, 4744-4755.	1.7	41
24	CH Bond Arylation of Diamondoids Catalyzed by Palladium(II) Acetate. Advanced Synthesis and Catalysis, 2016, 358, 2163-2171.	2.1	21
25	Role of Water in Stabilizing Ferricyanide Trianion and Ion-Induced Effects to the Hydrogen-Bonding Water Network at Long Distance. Journal of the American Chemical Society, 2015, 137, 1650-1657.	6.6	23
26	Effects of electronic structure on the hydration of PbNO3+ and SrNO3+ ion pairs. Physical Chemistry Chemical Physics, 2015, 17, 15963-15975.	1.3	4
27	Hydrogen bond mediated stabilization of the salt bridge structure for the glycine dimer anion. Physical Chemistry Chemical Physics, 2015, 17, 30642-30647.	1.3	14
28	Hydration of guanidinium depends on its local environment. Chemical Science, 2015, 6, 3420-3429.	3.7	24
29	Pd _n Ag _(4â^'n) and Pd _n Pt _(4â^'n) clusters on MgO (100): a density functional surface genetic algorithm investigation. Nanoscale, 2014, 6, 11777-11788.	2.8	35
30	Hydration of Guanidinium: Second Shell Formation at Small Cluster Size. Journal of Physical Chemistry A, 2014, 118, 5657-5666.	1.1	21
31	Dielectric Properties of Isolated Clusters. Springer Briefs in Molecular Science, 2014, , .	0.1	30
32	Molecular Beam Electric Field Deflection: Theoretical Description. Springer Briefs in Molecular Science, 2014, , 17-59.	0.1	1
33	Molecular Beam Electric Field Deflection: Experimental Considerations. Springer Briefs in Molecular Science, 2014, , 7-16.	0.1	0
34	Novel Experimental Tools. Springer Briefs in Molecular Science, 2014, , 81-94.	0.1	0
35	Global optimization of clusters using electronic structure methods. International Journal of Quantum Chemistry, 2013, 113, 2091-2109.	1.0	184
36	Note: Gas phase structures of bare Si 8 and Si 11 clusters from molecular beam electric deflection experiments. Journal of Chemical Physics, 2012, 136, 186101.	1.2	27

Sven Heiles

#	Article	IF	CITATIONS
37	Polarizabilities of SiN (N = 8–75) clusters from molecular beam electric deflection experiments. European Physical Journal D, 2012, 66, 1.	0.6	18
38	Dopant-induced 2D–3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au–Ag nanoalloys. Nanoscale, 2012, 4, 1109-1115.	2.8	93
39	Nineâ€Atom Tinâ€Bismuth Clusters: Mimicking Excess Electrons by Element Substitution. ChemPlusChem, 2012, 77, 532-535.	1.3	16
40	Bismuth-Doped Tin Clusters: Experimental and Theoretical Studies of Neutral Zintl Analogues. Journal of Physical Chemistry A, 2012, 116, 7756-7764.	1.1	35
41	On the rotational temperature and structure dependence of electric field deflection experiments: A case study of germanium clusters. Journal of Chemical Physics, 2011, 135, 034303.	1.2	30
42	Mass spectrometry and beam deflection studies of tin–lead nanoalloy clusters. Physical Chemistry Chemical Physics, 2010, 12, 247-253.	1.3	7
43	Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach. Journal of the American Chemical Society, 2009, 131, 357-367.	6.6	141
44	Electric deflection studies on lead clusters. Journal of Chemical Physics, 2008, 129, 044304.	1.2	27
45	AP-MALDI MSI of lipids in mouse brain tissue sections. Protocol Exchange, 0, , .	0.3	4
46	Chemical and topographical 3D surface profiling using atmospheric pressure LDI and MALDI MS imaging. Protocol Exchange, 0, , .	0.3	4