Costanza Conti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Annihilation operators for exponential spaces in subdivision. Applied Mathematics and Computation, 2022, 418, 126796.	2.2	0
2	Reproduction capabilities of penalized hyperbolic-polynomial splines. Applied Mathematics Letters, 2022, 132, 108133.	2.7	2
3	Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA Journal of Numerical Analysis, 2021, 41, 2936-2961.	2.9	8
4	C1-Quartic Butterfly-Spline Interpolation on Type-1 Triangulations. Springer Proceedings in Mathematics and Statistics, 2021, , 11-26.	0.2	0
5	Non-stationary Subdivision Schemes: State of the Art and Perspectives. Springer Proceedings in Mathematics and Statistics, 2021, , 39-71.	0.2	3
6	Stable recovery of planar regions with algebraic boundaries in Bernstein form. Advances in Computational Mathematics, 2021, 47, 1.	1.6	0
7	Joint spectral radius and ternary hermite subdivision. Advances in Computational Mathematics, 2021, 47, 1.	1.6	8
8	Penalized hyperbolic-polynomial splines. Applied Mathematics Letters, 2021, 118, 107159.	2.7	5
9	Optimal Hölder-Zygmund exponent of semi-regular refinable functions. Journal of Approximation Theory, 2020, 251, 105340.	0.8	0
10	Convergence analysis of corner cutting algorithms refining nets of functions. Mathematics and Computers in Simulation, 2020, 176, 134-146.	4.4	3
11	Applied Scientific Computing XV: Innovative Modeling and Simulation in Sciences. Mathematics and Computers in Simulation, 2020, 176, 1-3.	4.4	0
12	Computational error bounds for Laplace transform inversion based on smoothing splines. Applied Mathematics and Computation, 2020, 383, 125376.	2.2	6
13	Convergence and Normal Continuity Analysis of Nonstationary Subdivision Schemes Near Extraordinary Vertices and Faces. Constructive Approximation, 2019, 50, 457-496.	3.0	10
14	An algebraic approach to polynomial reproduction of Hermite subdivision schemes. Journal of Computational and Applied Mathematics, 2019, 349, 302-315.	2.0	13
15	System theory and orthogonal multi-wavelets. Journal of Approximation Theory, 2019, 238, 85-102.	0.8	4
16	Symmetric four-directional bivariate pseudo-spline symbols. Computer Aided Geometric Design, 2018, 60, 10-17.	1.2	7
17	Semi-automatic spline fitting of planar curvilinear profiles in digital images using the Hough transform. Pattern Recognition, 2018, 74, 64-76.	8.1	20
18	Convergence and smoothness of tensor-product of two non-uniform linear subdivision schemes. Computer Aided Geometric Design, 2018, 66, 16-18.	1.2	4

COSTANZA CONTI

#	Article	IF	CITATIONS
19	Convergence of level-dependent Hermite subdivision schemes. Applied Numerical Mathematics, 2017, 116, 119-128.	2.1	15
20	Regularity of non-stationary subdivision: a matrix approach. Numerische Mathematik, 2017, 135, 639-678.	1.9	23
21	Approximation order and approximate sum rules in subdivision. Journal of Approximation Theory, 2016, 207, 380-401.	0.8	22
22	Factorization of Hermite subdivision operators preserving exponentials and polynomials. Advances in Computational Mathematics, 2016, 42, 1055-1079.	1.6	22
23	Exponential pseudo-splines: Looking beyond exponential B-splines. Journal of Mathematical Analysis and Applications, 2016, 439, 32-56.	1.0	21
24	Limits of level and parameter dependent subdivision schemes: A matrix approach. Applied Mathematics and Computation, 2016, 272, 20-27.	2.2	5
25	Ellipse-preserving Hermite interpolation and subdivision. Journal of Mathematical Analysis and Applications, 2015, 426, 211-227.	1.0	40
26	Convergence of univariate non-stationary subdivision schemes via asymptotic similarity. Computer Aided Geometric Design, 2015, 37, 1-8.	1.2	34
27	Exponential Hermite splines for the analysis of biomedical images. , 2014, , .		22
28	Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix. Numerische Mathematik, 2014, 127, 223-254.	1.9	36
29	Dual Hermite subdivision schemes of de Rham-type. BIT Numerical Mathematics, 2014, 54, 955-977.	2.0	29
30	A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines. Advances in Computational Mathematics, 2013, 39, 395-424.	1.6	6
31	Dual univariate <mml:math <br="" altimg="si36.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>m</mml:mi></mml:math> -ary subdivision schemes of de Rham-type. Journal of Mathematical Analysis and Applications, 2013, 407, 443-456.	1.0	22
32	Polynomial reproduction of multivariate scalar subdivision schemes. Journal of Computational and Applied Mathematics, 2013, 240, 51-61.	2.0	33
33	Interpolatory blending net subdivision schemes of Dubuc–Deslauriers type. Computer Aided Geometric Design, 2012, 29, 722-735.	1.2	3
34	Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction. Journal of Computational and Applied Mathematics, 2011, 236, 543-556.	2.0	46
35	Analysis of subdivision schemes for nets of functions by proximity and controllability. Journal of Computational and Applied Mathematics, 2011, 236, 461-475.	2.0	8
36	From approximating to interpolatory non-stationary subdivision schemes with the same generation properties. Advances in Computational Mathematics, 2011, 35, 217-241.	1.6	28

Costanza Conti

#	Article	IF	CITATIONS
37	Scalar multivariate subdivision schemes and box splines. Computer Aided Geometric Design, 2011, 28, 285-306.	1.2	29
38	Polynomial reproduction for univariate subdivision schemes of any arity. Journal of Approximation Theory, 2011, 163, 413-437.	0.8	77
39	From Full Rank Subdivision Schemes to Multichannel Wavelets: A Constructive Approach. Applied and Numerical Harmonic Analysis, 2011, , 109-130.	0.3	0
40	Stationary and nonstationary affine combination of subdivision masks. Mathematics and Computers in Simulation, 2010, 81, 623-635.	4.4	4
41	Affine combination of B-spline subdivision masks andÂitsÂnon-stationary counterparts. BIT Numerical Mathematics, 2010, 50, 269-299.	2.0	29
42	Full rank interpolatory subdivision: A first encounter with the multivariate realm. Journal of Approximation Theory, 2010, 162, 559-575.	0.8	2
43	Blending based corner cutting subdivision scheme for nets of curves. Computer Aided Geometric Design, 2010, 27, 340-358.	1.2	4
44	Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution. Journal of Computational and Applied Mathematics, 2010, 233, 1649-1659.	2.0	12
45	A New Family of Interpolatory Non-Stationary Subdivision Schemes for Curve Design in Geometric Modeling. , 2010, , .		8
46	Solving Bezout-like polynomial equations for the design of interpolatory subdivision schemes. , 2010, , .		3
47	From symmetric subdivision masks of Hurwitz type to interpolatory subdivision masks. Linear Algebra and Its Applications, 2009, 431, 1971-1987.	0.9	22
48	Full rank positive matrix symbols: interpolation and orthogonality. BIT Numerical Mathematics, 2008, 48, 5-27.	2.0	9
49	Adaptive frame methods for nonlinear variational problems. Numerische Mathematik, 2008, 109, 45-75.	1.9	4
50	Locally tensor product functions in algebraic grid optimization. Applied Mathematics and Computation, 2008, 197, 745-754.	2.2	3
51	Approximation by GP box-splines on a four-direction mesh. Journal of Computational and Applied Mathematics, 2008, 221, 310-329.	2.0	3
52	Smoothed hat functions in subdivision. Journal of Computational and Applied Mathematics, 2008, 221, 330-345.	2.0	1
53	Totally positive functions through nonstationary subdivision schemes. Journal of Computational and Applied Mathematics, 2007, 200, 255-265.	2.0	10
54	An algebraic grid optimization algorithm using condition numbers. Applied Numerical Mathematics, 2006, 56, 1123-1133	2.1	2

COSTANZA CONTI

#	Article	lF	CITATIONS
55	An algebraic–elliptic algorithm for boundary orthogonal grid generation. Applied Mathematics and Computation, 2005, 162, 15-27.	2.2	6
56	Regularity of multivariate vector subdivision schemes. Numerical Algorithms, 2005, 39, 97-113.	1.9	36
57	Using discrete uniformity property in a mixed algebraic method. Applied Numerical Mathematics, 2004, 49, 355-366.	2.1	3
58	On the convergence of convolved vector subdivision schemes. Applied Numerical Mathematics, 2004, 51, 477-486.	2.1	2
59	Re-parameterisation technique in algebraic numerical grid generation via subdivision schemes. Applied Numerical Mathematics, 2004, 51, 487-496.	2.1	1
60	Concerning Order of Convergence for Subdivision. Numerical Algorithms, 2004, 36, 345-363.	1.9	5
61	Interpolatory rank-1 vector subdivision schemes. Computer Aided Geometric Design, 2004, 21, 341-351.	1.2	17
62	Convergence of multivariate non-stationary vector subdivision schemes. Applied Numerical Mathematics, 2004, 49, 343-354.	2.1	3
63	The bidimensional interproximation problem and mixed splines. Journal of Computational and Applied Mathematics, 2001, 130, 1-16.	2.0	1
64	Cubic Spline Data Reduction Choosing the Knots from a Third Derivative Criterion. Numerical Algorithms, 2001, 28, 45-61.	1.9	10
65	Image data compression with three-directional splines. , 2000, 4119, 650.		0
66	A new subdivision method for bivariate splines on the four-directional mesh. Journal of Computational and Applied Mathematics, 2000, 119, 81-96.	2.0	19
67	Choosing nodes in parametric blending function interpolation. CAD Computer Aided Design, 1996, 28, 135-143.	2.7	2
68	A discrete monotonous interpolation scheme. Computing (Vienna/New York), 1994, 52, 257-267.	4.8	1