
Daisuke Kiga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8990035/publications.pdf Version: 2024-02-01

DAISLIKE KICA

#	Article	IF	CITATIONS
1	Comparative analysis of three studies measuring fluorescence from engineered bacterial genetic constructs. PLoS ONE, 2021, 16, e0252263.	1.1	11
2	Robust estimation of bacterial cell count from optical density. Communications Biology, 2020, 3, 512.	2.0	86
3	Comparison between Effects of Retroactivity and Resource Competition upon Change in Downstream Reporter Genes of Synthetic Genetic Circuits. Life, 2019, 9, 30.	1.1	7
4	Enhancement of Binding Affinity of Folate to Its Receptor by Peptide Conjugation. International Journal of Molecular Sciences, 2019, 20, 2152.	1.8	9
5	Horizontal transfer of code fragments between protocells can explain the origins of the genetic code without vertical descent. Scientific Reports, 2018, 8, 3532.	1.6	13
6	Escherichia coli expression, purification, and refolding of human folate receptor α (hFRα) and β (hFRβ). Protein Expression and Purification, 2018, 149, 17-22.	0.6	3
7	A Highly Bioactive Lys-Deficient IFN Leads to a Site-Specific Di-PEGylated IFN with Equivalent Bioactivity to That of Unmodified IFN-1±2b. ACS Synthetic Biology, 2018, 7, 2537-2546.	1.9	0
8	Constraint-based perturbation analysis with cluster Newton method: a case study of personalized parameter estimations with irinotecan whole-body physiologically based pharmacokinetic model. BMC Systems Biology, 2017, 11, 129.	3.0	9
9	A Bacterial Continuous Culture System Based on a Microfluidic Droplet Open Reactor. Analytical Sciences, 2016, 32, 61-66.	0.8	6
10	High-frequency Noise Attenuation of a Two-component System Responding to Short-pulse Input. , 2016, , .		2
11	Two site genetic incorporation of varying length polyethylene glycol into the backbone of one peptide. Chemical Communications, 2015, 51, 14385-14388.	2.2	6
12	In vitro selection of a photoresponsive peptide aptamer to glutathione-immobilized microbeads. Journal of Bioscience and Bioengineering, 2015, 119, 137-139.	1.1	4
13	Synthetic Biology. , 2015, , 2449-2450.		0
14	Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan. Origins of Life and Evolution of Biospheres, 2014, 44, 75-86.	0.8	1
15	Multiple Amino Acid-Excluded Genetic Codes for Protein Engineering Using Multiple Sets of tRNA Variants. ACS Synthetic Biology, 2014, 3, 140-144.	1.9	6
16	General Applicability of Synthetic Gene-Overexpression for Cell-Type Ratio Control via Reprogramming. ACS Synthetic Biology, 2014, 3, 638-644.	1.9	8
17	2P280 Effects of downstream reporter genes on synthetic genetic circuits(24. Mathematical) Tj ETQq1 1 0.784	1314 rgBT / 0.0	Overlock 10
18	Effects of downstream genes on synthetic genetic circuits. BMC Systems Biology, 2014, 8, S4.	3.0	16

DAISUKE KIGA

#	Article	IF	CITATIONS
19	An Observation Method for Autonomous Signaling-Mediated Synthetic Diversification in Escherichia coli. Methods in Molecular Biology, 2014, 1151, 69-74.	0.4	0
20	Synthetic Biology. , 2014, , 1-2.		0
21	The number of amino acids in a genetic code. RSC Advances, 2013, 3, 12512.	1.7	5
22	Waddington Landscape Based Experimental Model of Phenotypic Diversification. Seibutsu Butsuri, 2013, 53, 319-320.	0.0	0
23	Cultivation of Synthetic Biology with the iGEM Competition. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2013, 17, 161-166.	0.5	0
24	Synthetic Biology and Dual Use. Journal of Disaster Research, 2013, 8, 698-704.	0.4	0
25	Tunability of the ratio of cell states after the synthetic diversification by the diversity generator. Communicative and Integrative Biology, 2012, 5, 393-394.	0.6	0
26	Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Research, 2012, 40, 10576-10584.	6.5	18
27	An aptazyme-based molecular device that converts a small-molecule input into an RNA output. Chemical Communications, 2012, 48, 7556.	2.2	12
28	Design strategy for an initial state-independent diversity generator. Chem-Bio Informatics Journal, 2012, 12, 39-49.	0.1	0
29	RTRACS: A Modularized RNA-Dependent RNA Transcription System with High Programmability. Accounts of Chemical Research, 2011, 44, 1369-1379.	7.6	23
30	2SL-04 Tunable synthetic phenotypic diversification on Waddington's landscape through autonomous signaling(2SL Information processing of biological systems,The 49th Annual Meeting of the) Tj ETQq0 0 0 rgBT	/Ov erl ock	10 Tof 50 297
31	Tunable synthetic phenotypic diversification on Waddington's landscape through autonomous signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17969-17973.	3.3	38
32	Construction of a genetic AND gate under a new standard for assembly of genetic parts. BMC Genomics, 2010, 11, S16.	1.2	12
33	RNA Oscillator: Limit Cycle Oscillations based on Artificial Biomolecular Reactions. New Generation Computing, 2009, 27, 107-127.	2.5	8
34	Design and Numerical Analysis of RNA Oscillator. Proceedings in Information and Communications Technology, 2009, , 201-212.	0.2	1
35	A design and feasibility study of reactions comprising DNA molecular machine that walks autonomously by using a restriction enzyme. Natural Computing, 2008, 7, 303-315.	1.8	2
36	Synthetic Biology. New Generation Computing, 2008, 26, 347-364.	2.5	2

#	Article	IF	CITATIONS
37	Experiments and simulation models of a basic computation element of an autonomous molecular computing system. Physical Review E, 2008, 78, 041921.	0.8	40

2P280 Autonomous DNA computing in cell-sized liposome(Native and artificial) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,702 Td biomemb

S0211 Molecular computing and molecular communication : synthetic approach using
biomolecules(Molecular Computing and Molecular Communication: New Computing and) Tj ETQq1 1 0.784314 rgBTdOverlook 10 Tf 50

1P335 Construction of in vitro proteosynthesis molecular automaton(Bioengineering,Poster) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622

41	A Realization of DNA Molecular Machine That Walks Autonomously by Using a Restriction Enzyme. , 2007, , 54-65.		5
42	Cationâ~'Ï€ Interaction in the Polyolefin Cyclization Cascade Uncovered by Incorporating Unnatural Amino Acids into the Catalytic Sites of Squalene Cyclase. Journal of the American Chemical Society, 2006, 128, 13184-13194.	6.6	72
43	DNA polymerase programmed with a hairpin DNA incorporates a multiple-instruction architecture into molecular computing. BioSystems, 2006, 83, 18-25.	0.9	25
44	Translation of â€~rare' Codons in a Cell-free Protein Synthesis System from Escherichia coli. Journal of Structural and Functional Genomics, 2006, 7, 31-36.	1.2	28
45	An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9715-9720.	3.3	163
46	Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Research, 2002, 30, 4692-4699.	6.5	231
47	Shifted positioning of the anticodon nucleotide residues of amber suppressor tRNA species by Escherichia coli arginyl-tRNA synthetase. FEBS Journal, 2001, 268, 6207-6213.	0.2	12
48	Molecular Computation by DNA Hairpin Formation. Science, 2000, 288, 1223-1226.	6.0	363
49	State transitions by molecules. BioSystems, 1999, 52, 81-91.	0.9	94