Nabla M Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989954/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of microbial numbers in anaerobically digested biofertilisers. Environmental Technology (United Kingdom), 2021, 42, 753-763.	2.2	4
2	Effect of green waste and lime amendments on biostabilisation, physical-chemical and microbial properties of the composted fine fraction of residual municipal solid waste. Waste Management and Research, 2021, 39, 1069-1077.	3.9	2
3	Biofertilisation with anaerobic digestates: A field study of effects on soil microbial abundance and diversity. Applied Soil Ecology, 2020, 147, 103403.	4.3	27
4	Biofertilisation with Anaerobic Digestates: Effects on the Productive Traits of Ryegrass and Soil Nutrients. Journal of Soil Science and Plant Nutrition, 2020, 20, 1665-1678.	3.4	5
5	Responses of ryegrass, white clover, soil plant primary macronutrients and microbial abundance to application of anaerobic digestates, cattle slurry and inorganic N-fertiliser. Applied Soil Ecology, 2019, 144, 112-122.	4.3	17
6	Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Management, 2018, 78, 8-15.	7.4	69
7	Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis. Canadian Journal of Microbiology, 2016, 62, 485-491.	1.7	6
8	Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests. Folia Microbiologica, 2015, 60, 399-410.	2.3	14
9	Bacterial Communities' Response to Nitrogen, Lime and Plants. , 2013, , .		0
10	Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 2011, 338, 483-495.	3.7	162
11	Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil. Applied and Environmental Soil Science, 2010, 2010, 1-7.	1.7	36
12	Impact of wildfire intensity and logging on fungal and nitrogen-cycling bacterial communities in British Columbia forest soils. Forest Ecology and Management, 2010, 260, 787-794.	3.2	13
13	Enhanced biodegradation of petroleum hydrocarbons in the mycorrhizosphere of subâ€boreal forest soils. Environmental Microbiology Reports, 2010, 2, 587-593.	2.4	7
14	Seasonal influences on fungal community structure in unimproved and improved upland grassland soils. Canadian Journal of Microbiology, 2006, 52, 689-694.	1.7	34
15	Characterization of Bacterial Community Structure on a Weathered Pegmatitic Granite. Microbial Ecology, 2006, 51, 526-534.	2.8	114
16	Effect of Sheep Urine Deposition on the Bacterial Community Structure in an Acidic Upland Grassland Soil. Applied and Environmental Microbiology, 2006, 72, 7231-7237.	3.1	29
17	Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environmental Microbiology, 2005, 7, 780-788.	3.8	84
18	Soil Bacterial and Fungal Community Structure Across a Range of Unimproved and Semi-Improved Upland Grasslands. Microbial Ecology, 2005, 50, 463-473.	2.8	33

#	Article	IF	CITATIONS
19	Seasonal and management influences on bacterial community structure in an upland grassland soil. FEMS Microbiology Ecology, 2005, 53, 329-337.	2.7	46
20	Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environmental Microbiology, 2004, 6, 1070-1080.	3.8	147
21	Fingerprinting the fungal community. The Mycologist, 2003, 17, 158-164.	0.4	24