List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989830/publications.pdf

Version: 2024-02-01

TOMAS KALINCIK

#	Article	IF	CITATIONS
1	Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2019, 321, 175.	3.8	336
2	Defining secondary progressive multiple sclerosis. Brain, 2016, 139, 2395-2405.	3.7	281
3	Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurology, The, 2020, 19, 307-316.	4.9	219
4	Associations of Disease-Modifying Therapies With COVID-19 Severity in Multiple Sclerosis. Neurology, 2021, 97, e1870-e1885.	1.5	168
5	Defining reliable disability outcomes in multiple sclerosis. Brain, 2015, 138, 3287-3298.	3.7	162
6	Predictors of longâ€ŧerm disability accrual in relapseâ€onset multiple sclerosis. Annals of Neurology, 2016, 80, 89-100.	2.8	158
7	Treatment decisions in multiple sclerosis — insights from real-world observational studies. Nature Reviews Neurology, 2017, 13, 105-118.	4.9	154
8	Thalamic Atrophy Is Associated with Development of Clinically Definite Multiple Sclerosis. Radiology, 2013, 268, 831-841.	3.6	145
9	Switch to natalizumab versus fingolimod in active relapsing–remitting multiple sclerosis. Annals of Neurology, 2015, 77, 425-435.	2.8	143
10	Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain, 2013, 136, 3609-3617.	3.7	140
11	Fingolimod after natalizumab and the risk of short-term relapse. Neurology, 2014, 82, 1204-1211.	1.5	138
12	Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurology, The, 2017, 16, 271-281.	4.9	134
13	Multiple Sclerosis Relapses: Epidemiology, Outcomes and Management. A Systematic Review. Neuroepidemiology, 2015, 44, 199-214.	1.1	124
14	Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: A systematic review. Autoimmunity Reviews, 2017, 16, 658-665.	2.5	106
15	Cross Cultural Validation of The Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and The Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Clinical Neuropsychologist, 2012, 26, 1186-1200.	1.5	105
16	Comparison of Switch to Fingolimod or Interferon Beta/Clatiramer Acetate in Active Multiple Sclerosis. JAMA Neurology, 2015, 72, 405.	4.5	100
17	Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis. Lancet Neurology, The, 2019, 18, 973-980.	4.9	99
18	Towards personalized therapy for multiple sclerosis: prediction of individual treatment response. Brain, 2017, 140, 2426-2443.	3.7	94

#	Article	IF	CITATIONS
19	Evolution of Cortical and Thalamus Atrophy and Disability Progression in Early Relapsing-Remitting MS during 5 Years. American Journal of Neuroradiology, 2013, 34, 1931-1939.	1.2	90
20	Volumetric MRI Markers and Predictors of Disease Activity in Early Multiple Sclerosis: A Longitudinal Cohort Study. PLoS ONE, 2012, 7, e50101.	1.1	73
21	Risk of relapse phenotype recurrence in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1511-1522.	1.4	73
22	Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 458-468.	0.9	71
23	Environmental Factors Associated with Disease Progression after the First Demyelinating Event: Results from the Multi-Center SET Study. PLoS ONE, 2013, 8, e53996.	1.1	68
24	Observational data: Understanding the real MS world. Multiple Sclerosis Journal, 2016, 22, 1642-1648.	1.4	67
25	Data quality evaluation for observational multiple sclerosis registries. Multiple Sclerosis Journal, 2017, 23, 647-655.	1.4	64
26	Comparative efficacy of switching to natalizumab in active multiple sclerosis. Annals of Clinical and Translational Neurology, 2015, 2, 373-387.	1.7	57
27	Clinical correlates of grey matter pathology in multiple sclerosis. BMC Neurology, 2012, 12, 10.	0.8	55
28	Effect of Disease-Modifying Therapy on Disability in Relapsing-Remitting Multiple Sclerosis Over 15 Years. Neurology, 2021, 96, e783-e797.	1.5	54
29	Risk of secondary progressive multiple sclerosis: A longitudinal study. Multiple Sclerosis Journal, 2020, 26, 79-90.	1.4	52
30	COVID-19 in people with multiple sclerosis: A global data sharing initiative. Multiple Sclerosis Journal, 2020, 26, 1157-1162.	1.4	50
31	Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 196-203.	0.9	49
32	Longitudinal MRI and neuropsychological assessment of patients with clinically isolated syndrome. Journal of Neurology, 2014, 261, 1735-1744.	1.8	45
33	Predictors of disability worsening in clinically isolated syndrome. Annals of Clinical and Translational Neurology, 2015, 2, 479-491.	1.7	43
34	Natalizumab, Fingolimod, and Dimethyl Fumarate Use and Pregnancy-Related Relapse and Disability in Women With Multiple Sclerosis. Neurology, 2021, 96, .	1.5	41
35	Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 51-61.	1.4	39
36	Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Multiple Sclerosis Journal, 2020, 26, 1031-1044.	1.4	39

#	Article	IF	CITATIONS
37	Anti-inflammatory disease-modifying treatment and short-term disability progression in SPMS. Neurology, 2017, 89, 1050-1059.	1.5	38
38	Identification of multiple sclerosis patients at highest risk of cognitive impairment using an integrated brain magnetic resonance imaging assessment approach. European Journal of Neurology, 2017, 24, 292-301.	1.7	38
39	Long-term disability trajectories in primary progressive MS patients: A latent class growth analysis. Multiple Sclerosis Journal, 2018, 24, 642-652.	1.4	37
40	Comparative effectiveness of glatiramer acetate and interferon beta formulations in relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1159-1171.	1.4	36
41	Cladribine versus fingolimod, natalizumab and interferon β for multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1617-1626.	1.4	36
42	Incidence of pregnancy and disease-modifying therapy exposure trends in women with multiple sclerosis: A contemporary cohort study. Multiple Sclerosis and Related Disorders, 2019, 28, 235-243.	0.9	35
43	Cost of multiple sclerosis in the Czech Republic: The COMS study. Multiple Sclerosis Journal, 2012, 18, 662-668.	1.4	34
44	The effect of oral immunomodulatory therapy on treatment uptake and persistence in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 520-532.	1.4	34
45	The MSBase registry: Informing clinical practice. Multiple Sclerosis Journal, 2019, 25, 1828-1834.	1.4	34
46	Comparative efficacy of first-line natalizumab vs IFN-β or glatiramer acetate in relapsing MS. Neurology: Clinical Practice, 2016, 6, 102-115.	0.8	33
47	Update on the management of multiple sclerosis during the COVID-19 pandemic and post pandemic: An international consensus statement. Journal of Neuroimmunology, 2021, 357, 577627.	1.1	33
48	Corpus Callosum Atrophy – A Simple Predictor of Multiple Sclerosis Progression: A Longitudinal 9-Year Study. European Neurology, 2012, 68, 23-27.	0.6	32
49	Early clinical markers of aggressive multiple sclerosis. Brain, 2020, 143, 1400-1413.	3.7	32
50	Contribution of different relapse phenotypes to disability in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 266-276.	1.4	30
51	Clinical and therapeutic predictors of disease outcomes in AQP4-lgG+ neuromyelitis optica spectrum disorder. Multiple Sclerosis and Related Disorders, 2020, 38, 101868.	0.9	29
52	Serum microRNA is a biomarker for post-operative monitoring in glioma. Journal of Neuro-Oncology, 2020, 149, 391-400.	1.4	27
53	Persistence on Therapy and Propensity Matched Outcome Comparison of Two Subcutaneous Interferon Beta 1a Dosages for Multiple Sclerosis. PLoS ONE, 2013, 8, e63480.	1.1	26
54	Cognitive clinicoâ€radiological paradox in early stages of multiple sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 81-91.	1.7	26

#	Article	IF	CITATIONS
55	Early magnetic resonance imaging predictors of clinical progression after 48Âmonths in clinically isolated syndrome patients treated with intramuscular interferon βâ€1a. European Journal of Neurology, 2015, 22, 1113-1123.	1.7	25
56	Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury. Autonomic Neuroscience: Basic and Clinical, 2010, 154, 20-29.	1.4	24
57	Delay from treatment start to full effect of immunotherapies for multiple sclerosis. Brain, 2020, 143, 2742-2756.	3.7	24
58	Monitoring of radiologic disease activity by serum neurofilaments in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	24
59	Real-world effectiveness of cladribine for Australian patients with multiple sclerosis: An MSBase registry substudy. Multiple Sclerosis Journal, 2021, 27, 465-474.	1.4	23
60	Early predictors of non-response to interferon in multiple sclerosis. Acta Neurologica Scandinavica, 2012, 126, 390-397.	1.0	22
61	Disturbance of real space navigation in moderately advanced but not in early Huntington's disease. Journal of the Neurological Sciences, 2012, 312, 86-91.	0.3	21
62	Association of Pregnancy With the Onset of Clinically Isolated Syndrome. JAMA Neurology, 2020, 77, 1496.	4.5	21
63	Association of Sustained Immunotherapy With Disability Outcomes in Patients With Active Secondary Progressive Multiple Sclerosis. JAMA Neurology, 2020, 77, 1398.	4.5	21
64	Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression. Computer Methods and Programs in Biomedicine, 2021, 208, 106180.	2.6	21
65	Association of Inflammation and Disability Accrual in Patients With Progressive-Onset Multiple Sclerosis. JAMA Neurology, 2018, 75, 1407.	4.5	20
66	Head-to-head drug comparisons in multiple sclerosis. Neurology, 2019, 93, 793-809.	1.5	20
67	Familial mesial temporal lobe epilepsy and the borderland of déjà vu. Annals of Neurology, 2017, 82, 166-176.	2.8	19
68	Interferon, azathioprine and corticosteroids in multiple sclerosis: 6-year follow-up of the ASA cohort. Clinical Neurology and Neurosurgery, 2012, 114, 940-946.	0.6	18
69	Multiple sclerosis susceptibility loci do not alter clinical and MRI outcomes in clinically isolated syndrome. Genes and Immunity, 2013, 14, 244-248.	2.2	18
70	Quantifying risk of early relapse in patients with first demyelinating events: Prediction in clinical practice. Multiple Sclerosis Journal, 2017, 23, 1346-1357.	1.4	18
71	Treatment escalation leads to fewer relapses compared with switching to another moderately effective therapy. Journal of Neurology, 2019, 266, 306-315.	1.8	18
72	Impaired ambulation and steroid therapy impact negatively on bone health in multiple sclerosis. European Journal of Neurology, 2015, 22, 624-632.	1.7	17

#	Article	IF	CITATIONS
73	Predicting Infection Risk in Multiple Sclerosis Patients Treated with Ocrelizumab: A Retrospective Cohort Study. CNS Drugs, 2021, 35, 907-918.	2.7	17
74	Lymphocyte reconstitution after DMF discontinuation in clinical trial and real-world patients with MS. Neurology: Clinical Practice, 2020, 10, 510-519.	0.8	17
75	Impairment of Smooth Pursuit as a Marker of Early Multiple Sclerosis. Frontiers in Neurology, 2016, 7, 206.	1.1	16
76	Diagnosis, differential diagnosis and misdiagnosis of Susac syndrome. European Journal of Neurology, 2022, 29, 1771-1781.	1.7	16
77	Distinct psychopathology profiles in patients with epileptic seizures compared to non-epileptic psychogenic seizures. Epilepsy Research, 2019, 158, 106234.	0.8	15
78	Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	15
79	Effects of High- and Low-Efficacy Therapy in Secondary Progressive Multiple Sclerosis. Neurology, 2021, 97, e869-e880.	1.5	15
80	The histopathological staging of tau, but not amyloid, corresponds to antemortem cognitive status, dementia stage, functional abilities and neuropsychiatric symptoms. International Journal of Neuroscience, 2021, 131, 800-809.	0.8	14
81	The feasibility, reliability and concurrent validity of the MSReactor computerized cognitive screening tool in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641985918.	1.5	13
82	Selected changes in spinal cord morphology after T4 transection and olfactory ensheathing cell transplantation. Autonomic Neuroscience: Basic and Clinical, 2010, 158, 31-38.	1.4	12
83	Personality profiles differ between patients with epileptic seizures and patients with psychogenic non-epileptic seizures. Seizure: the Journal of the British Epilepsy Association, 2019, 73, 1-8.	0.9	12
84	Antiâ€inflammatory diseaseâ€modifying treatment and disability progression in primary progressive multiple sclerosis: a cohort study. European Journal of Neurology, 2019, 26, 363-370.	1.7	12
85	Association of Latitude and Exposure to Ultraviolet B Radiation With Severity of Multiple Sclerosis. Neurology, 2022, 98, .	1.5	12
86	Local response to cold in rat tail after spinal cord transection. Journal of Applied Physiology, 2009, 106, 1976-1985.	1.2	11
87	A study protocol for a phase II randomised, double-blind, placebo-controlled trial of sodium selenate as a disease-modifying treatment for behavioural variant frontotemporal dementia. BMJ Open, 2020, 10, e040100.	0.8	11
88	Disability outcomes of early cerebellar and brainstem symptoms in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 755-766.	1.4	11
89	Prognostic value of acute cerebrospinal fluid abnormalities in antibody-positive autoimmune encephalitis. Journal of Neuroimmunology, 2021, 353, 577508.	1.1	11
90	Discard volume necessary for elimination of heparin flush effect on thromboelastography. Blood Coagulation and Fibrinolysis, 2010, 21, 192-195.	0.5	10

#	Article	IF	CITATIONS
91	Arteriovenous differences of hematological and coagulation parameters in patients with sepsis. Blood Coagulation and Fibrinolysis, 2010, 21, 770-774.	0.5	10
92	Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats. Autonomic Neuroscience: Basic and Clinical, 2016, 201, 17-23.	1.4	10
93	Redefining the Multiple Sclerosis Severity Score (MSSS): The effect of sex and onset phenotype. Multiple Sclerosis Journal, 2020, 26, 1765-1774.	1.4	10
94	Fast and safe: Optimising multiple sclerosis infusions during COVID-19 pandemic. Multiple Sclerosis and Related Disorders, 2021, 47, 102642.	0.9	10
95	Has the Time Come to Revisit Our Standard Measures of Disability Progression in Multiple Sclerosis?. Neurology, 2021, 96, 12-13.	1.5	10
96	Heparinaseâ€modified thromboelastography can result in a fibrinolytic pattern. Anaesthesia, 2010, 65, 864-865.	1.8	9
97	Long-term outcomes in patients presenting with optic neuritis: Analyses of the MSBase registry. Journal of the Neurological Sciences, 2021, 430, 118067.	0.3	9
98	Measurement of neurofilaments improves stratification of future disease activity in early multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 2001-2013.	1.4	9
99	Silent lesions on MRI imaging – Shifting goal posts for treatment decisions in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1569-1577.	1.4	8
100	Evaluating the perspective of patients with MS and related conditions on their DMT in relation to the COVID-19 pandemic in one MS centre in Australia. Multiple Sclerosis and Related Disorders, 2020, 46, 102516.	0.9	8
101	The effectiveness of natalizumab vs fingolimod–A comparison of international registry studies. Multiple Sclerosis and Related Disorders, 2021, 53, 103012.	0.9	8
102	Natalizumab Versus Fingolimod in Patients with Relapsing-Remitting Multiple Sclerosis: A Subgroup Analysis From Three International Cohorts. CNS Drugs, 2021, 35, 1217-1232.	2.7	8
103	Multiple Sclerosis Relapses Following Cessation of Fingolimod. Clinical Drug Investigation, 2022, 42, 355-364.	1.1	8
104	Interferon-beta or azathioprine as add-on therapies in patients with active multiple sclerosis. Neurological Research, 2012, 34, 923-930.	0.6	7
105	Reporting treatment outcomes in observational data: A fine balance. Multiple Sclerosis Journal, 2017, 23, 21-22.	1.4	7
106	Presentation and outcome of patients with intracranial tuberculoma in a high HIV prevalence setting. International Journal of Tuberculosis and Lung Disease, 2020, 24, 224-232.	0.6	7
107	Prediction of on-treatment disability worsening in RRMS with the MAGNIMS score. Multiple Sclerosis Journal, 2021, 27, 695-705.	1.4	7
108	Effect of lateral therapy switches to oral moderate-efficacy drugs in multiple sclerosis: a nationwide cohort study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 556-562.	0.9	7

#	Article	IF	CITATIONS
109	Adverse events related to antiepileptic drugs. Epilepsy and Behavior, 2021, 115, 107657.	0.9	7
110	Utilization of Multiple Sclerosis Therapies in the Middle East Over a Decade: 2009–2018. CNS Drugs, 2021, 35, 1097-1106.	2.7	7
111	Association Between Cognitive Trajectories and Disability Progression in Patients With Relapsing-Remitting Multiple Sclerosis. Neurology, 2021, 97, e2020-e2031.	1.5	7
112	Effectiveness of oral multiple sclerosis therapies in clinical context. Neurology, 2019, 92, 737-738.	1.5	6
113	Treatment response score to glatiramer acetate or interferon beta-1a. Neurology, 2020, 96, 10.1212/WNL.0000000000010991.	1.5	6
114	The effect of national disease-modifying therapy subsidy policy on long-term disability outcomes in people with multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 831-841.	1.4	6
115	Prediction of multiple sclerosis outcomes when switching to ocrelizumab. Multiple Sclerosis Journal, 2022, 28, 958-969.	1.4	6
116	Effect of desire for pregnancy on decisions to escalate treatment in multiple sclerosis care: Differences between MS specialists and non-MS specialists. Multiple Sclerosis and Related Disorders, 2022, 57, 103389.	0.9	6
117	Neuroimaging findings in immune effector cell associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy. Leukemia and Lymphoma, 2022, 63, 2364-2374.	0.6	6
118	Psychometric properties of the Hospital Anxiety and Depression Scale in an inpatient video-monitoring epilepsy cohort. Epilepsy and Behavior, 2020, 103, 106631.	0.9	5
119	Comparison of the effectiveness of a tailored cognitive behavioural therapy with a supportive listening intervention for depression in those newly diagnosed with multiple sclerosis (the) Tj ETQq1 1 0.784314	rgBT /Ove	erlgck 10 Tf 5
120	Brain atrophy and lesion burden are associated with disability progression in a multiple sclerosis real-world dataset using only T2-FLAIR: The NeuroSTREAM MSBase study. NeuroImage: Clinical, 2021, 32, 102802.	1.4	5
121	Interrogating large multiple sclerosis registries and databases: what information can be gained?. Current Opinion in Neurology, 2022, 35, 271-277.	1.8	5
122	Comparisons of therapies in different scenarios help complete the puzzle. Multiple Sclerosis Journal, 2018, 24, 694-695.	1.4	4
123	Efficacy of Cladribine Tablets as a Treatment for People With Multiple Sclerosis: Protocol for the CLOBAS Study (Cladribine, a Multicenter, Long-term Efficacy and Biomarker Australian Study). JMIR Research Protocols, 2021, 10, e24969.	0.5	4
124	A comparison of macular ganglion cell and retinal nerve fibre layer optical coherence tomographic parameters as predictors of visual outcomes of surgery for pituitary tumours. Pituitary, 2022, 25, 563-572.	1.6	4
125	Abbreviated assessment of psychopathology in patients with suspected seizure disorders. Epilepsy and Behavior, 2019, 100, 106530.	0.9	3
126	PACS Integration of Semiautomated Imaging Software Improves Day-to-Day MS Disease Activity Detection. American Journal of Neuroradiology, 2019, 40, 1624-1629.	1.2	3

#	Article	IF	CITATIONS
127	Comparative effectiveness of rituximab in multiple sclerosis. Nature Reviews Neurology, 2021, 17, 3-4.	4.9	3
128	The prevalence of epileptic seizures in multiple sclerosis in a large tertiary hospital in Australia. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732198976.	0.5	3
129	Determinants of therapeutic lag in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1838-1851.	1.4	3
130	Factors associated with treatment escalation among MS specialists and general neurologists: Results from an International cojoint study. Multiple Sclerosis and Related Disorders, 2022, 58, 103404.	0.9	3
131	Subjective versus objective performance in people with multiple sclerosis using the MSReactor computerised cognitive tests Multiple Sclerosis and Related Disorders, 2022, 58, 103393.	0.9	3
132	Influence of magnesium sulphate on evoked activity of rat brain after exposure to short-term hypoxia. Physiological Research, 2005, 54, 229-34.	0.4	3
133	Comparative Effectiveness and Cost-Effectiveness of Natalizumab and Fingolimod in Patients with Inadequate Response to Disease-Modifying Therapies in Relapsing-Remitting Multiple Sclerosis in the United Kingdom. Pharmacoeconomics, 2022, 40, 323-339.	1.7	3
134	Impact of methodological choices in comparative effectiveness studies: application in natalizumab versus fingolimod comparison among patients with multiple sclerosis. BMC Medical Research Methodology, 2022, 22, .	1.4	3
135	Reply: Towards personalized therapy for multiple sclerosis: limitations of observational data. Brain, 2018, 141, e39-e39.	3.7	2
136	Where there is inflammation, treatment may reduce disability progression – Yes. Multiple Sclerosis Journal, 2018, 24, 1808-1810.	1.4	2
137	Lesserâ€Known Aspects of Deep Brain Stimulation for Parkinson's Disease: Programming Sessions, Hardware Surgeries, Residential Care Admissions, and Deaths. Neuromodulation, 2021, , .	0.4	2
138	Multiple Sclerosis Severity Score (MSSS) improves the accuracy of individualized prediction in MS. Multiple Sclerosis Journal, 2022, , 135245852210845.	1.4	2
139	The dynamics of relapses during treatment switch in relapsing-remitting multiple sclerosis. Journal of Theoretical Biology, 2022, 541, 111091.	0.8	2
140	020â€Increased risk of an abnormal cervical screening test in women with MS exposed to high-efficacy disease-modifying treatments. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A7.3-A7.	0.9	1
141	Real-world studies provide reliable comparisons of disease modifying therapies in MS – Yes. Multiple Sclerosis Journal, 2020, 26, 159-161.	1.4	1
142	The MSReactor computerized cognitive battery correlates with the processing speed test in relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 43, 102212.	0.9	1
143	Stop inflammation and you stop neurodegeneration in MS – NO. Multiple Sclerosis Journal, 2017, 23, 1321-1323.	1.4	1
144	High BMI in Youths as a Modifiable Risk Factor for Multiple Sclerosis. Neurology, 2021, 97, 1057-1058.	1.5	1

#	Article	IF	CITATIONS
145	Confirmed disability progression as a marker of permanent disability in multiple sclerosis. European Journal of Neurology, 2022, , .	1.7	1
146	8 Journal of Clinical Neuroscience, 2014, 21, 2035-2036.	0.8	0
147	The impact of location, time and practice effects on computerised cognitive testing using msreactor in people with multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, e1.3-e1.	0.9	0
148	131â€CLADIN: CLADribine and INnate immune responses. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A42.3-A42.	0.9	0
149	Reply: Aggressive multiple sclerosis: a matter of measurement and timing. Brain, 2020, 143, e98-e98.	3.7	0
150	004â€Pregnancy-related relapse in natalizumab, fingolimod and dimethyl fumarate-treated women with multiple sclerosis. , 2021, , .		0
151	009â€Predicting infection risk in multiple sclerosis patients treated with ocrelizumab: a retrospective cohort study. , 2021, , .		0
152	011â€Worsening longitudinal reaction time trajectories using the MSReactor computerised battery predicts confirmed EDSS progression. , 2021, , .		0