Maurizio Gatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989440/publications.pdf

Version: 2024-02-01

116 5,519 papers citations

43 69
h-index g-index

126 126 all docs citations

126 times ranked 4365 citing authors

#	Article	IF	CITATIONS
1	TEM Imaging of Membrane Choreography During Mitosis of Drosophila Tissue Culture Cells. Methods in Molecular Biology, 2022, 2502, 407-415.	0.4	O
2	Absence of SCAPER causes male infertility in humans and <i>Drosophila </i> by modulating microtubule dynamics during meiosis. Journal of Medical Genetics, 2021, 58, 254-263.	1.5	7
3	Moonlighting in Mitosis: Analysis of the Mitotic Functions of Transcription and Splicing Factors. Cells, 2020, 9, 1554.	1.8	19
4	<i>Drosophila</i> Morgana is an Hsp90-interacting protein with a direct role in microtubule polymerization. Journal of Cell Science, 2020, 133, .	1.2	3
5	Intimate functional interactions betweenÂTGS1 and the SmnÂcomplex revealed by an analysis of the Drosophila eye development. PLoS Genetics, 2020, 16, e1008815.	1.5	3
6	Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Reports, 2020, 30, 1358-1372.e5.	2.9	34
7	RNAi-mediated depletion of the NSL complex subunits leads to abnormal chromosome segregation and defective centrosome duplication in Drosophila mitosis. PLoS Genetics, 2019, 15, e1008371.	1.5	8
8	The role of Patronin in Drosophila mitosis. BMC Molecular and Cell Biology, 2019, 20, 7.	1.0	6
9	Non3 is an essential Drosophila gene required for proper nucleolus assembly. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 190-198.	0.4	O
10	Mice with reduced expression of the telomereâ€associated protein Ft1 develop p53â€sensitive progeroid traits. Aging Cell, 2018, 17, e12730.	3.0	24
11	Ultrastructural analysis of mitotic Drosophila S2 cells identifies distinctive microtubule and intracellular membrane behaviors. BMC Biology, 2018, 16, 68.	1.7	14
12	Phenotypic characterization of diamond (dind), a Drosophila gene required for multiple aspects of cell division. Chromosoma, 2018, 127, 489-504.	1.0	7
13	Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. ELife, 2018, 7, .	2.8	19
14	A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of <i>Drosophila</i> Genome Integrity. Genetics, 2017, 205, 1151-1167.	1.2	27
15	Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. Cell Reports, 2017, 18, 1674-1686.	2.9	56
16	Drosophila Male Meiosis. Methods in Molecular Biology, 2017, 1471, 277-288.	0.4	5
17	The Hybrid Incompatibility Genes <i>Lhr</i> and <i>Hmr</i> Are Required for Sister Chromatid Detachment During Anaphase but Not for Centromere Function. Genetics, 2017, 207, 1457-1472.	1.2	22
18	The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genetics, 2017, 13, e1006784.	1.5	17

#	Article	IF	CITATIONS
19	The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Research, 2017, 45, 3068-3085.	6.5	19
20	Accurate measurement of poleward microtubule flux in the spindle of <i>Drosophila</i> S2 cells. Cell Biology International, 2016, 40, 984-990.	1.4	1
21	The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence. Open Biology, 2016, 6, 160103.	1.5	29
22	A simple and effective method for ultrastructural analysis of mitosis in Drosophila S2 cells. MethodsX, 2016, 3, 551-559.	0.7	11
23	Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex. Current Biology, 2015, 25, 1777-1783.	1.8	25
24	Telomere fusion in Drosophila: The role of subtelomeric chromatin. Fly, 2015, 9, 121-125.	0.9	1
25	AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance. PLoS Genetics, 2015, 11, e1005167.	1.5	38
26	The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres. PLoS Genetics, 2015, 11, e1005260.	1.5	21
27	DNA copy number evolution in Drosophila cell lines. Genome Biology, 2014, 15, R70.	3.8	96
28	Sugar and Chromosome Stability: Clastogenic Effects of Sugars in Vitamin B6-Deficient Cells. PLoS Genetics, 2014, 10, e1004199.	1.5	39
29	The Analysis of Mutant Alleles of Different Strength Reveals Multiple Functions of Topoisomerase 2 in Regulation of Drosophila Chromosome Structure. PLoS Genetics, 2014, 10, e1004739.	1.5	24
30	Biochemical Membrane Lipidomics during Drosophila Development. Developmental Cell, 2013, 24, 98-111.	3.1	133
31	Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres. Frontiers in Oncology, 2013, 3, 112.	1.3	24
32	Effete, a <i>Drosophila</i> Chromatin-Associated Ubiquitin-Conjugating Enzyme That Affects Telomeric and Heterochromatic Position Effect Variegation. Genetics, 2013, 195, 147-158.	1.2	12
33	Chromatin Staining ofDrosophilaTestes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067363.	0.2	4
34	F-Actin Staining of Drosophila Testes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067348-pdb.prot067348.	0.2	4
35	Giant meiotic spindles in males from <i>Drosophila</i> species with giant sperm tails. Journal of Cell Science, 2012, 125, 584-588.	1.2	19
36	Paraformaldehyde Fixation of Drosophila Testes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067330-pdb.prot067330.	0.2	9

#	Article	IF	CITATIONS
37	Formaldehyde Fixation ofDrosophilaTestes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067355.	0.2	8
38	The <i>Drosophila </i> RZZ complex: roles in membrane traffic and cytokinesis. Journal of Cell Science, 2012, 125, 4014-25.	1.2	26
39	The relative roles of centrosomal and kinetochore-driven microtubules in Drosophila spindle formation. Experimental Cell Research, 2012, 318, 1375-1380.	1.2	13
40	Giant meiotic spindles in males from Drosophila species with giant sperm tails. Development (Cambridge), 2012, 139, e807-e807.	1.2	0
41	Preparation of Meiotic Chromosomes from Larval and Pupal <i>Drosophila</i> Testes. Cold Spring Harbor Protocols, 2011, 2011, prot5579.	0.2	2
42	Preparation of Live Testis Squashes in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2011, 2011, prot5577.	0.2	3
43	Immunostaining of <i>Drosophila</i> Testes. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065771.	0.2	6
44	Methanol-Acetone Fixation of Drosophila Testes. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065763-pdb.prot065763.	0.2	12
45	A Signature Inferred from Drosophila Mitotic Genes Predicts Survival of Breast Cancer Patients. PLoS ONE, 2011, 6, e14737.	1.1	9
46	Tubby-tagged balancers for the Drosophila X and second chromosomes. Fly, 2011, 5, 369-370.	0.9	23
47	Terminin: A protein complex that mediates epigenetic maintenance of <i>Drosophila </i> telomeres. Nucleus, 2011, 2, 383-391.	0.6	65
48	Phenotypic analysis of <i>misato</i> function reveals roles of noncentrosomal microtubules in <i>Drosophila</i> spindle formation. Journal of Cell Science, 2011, 124, 706-717.	1.2	19
49	Immunostaining of Mitotic Chromosomes from Drosophila Larval Brain. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065524-pdb.prot065524.	0.2	9
50	Preparation of Meiotic Chromosomes from Adult <i>Drosophila</i> Protocols, 2011, 2011, prot5578.	0.2	1
51	Phenotypic analysis of <i>misato</i> function reveals roles of noncentrosomal microtubules in <i>Drosophila</i> spindle formation. Development (Cambridge), 2011, 138, e1-e1.	1.2	0
52	Preparation and Orcein Staining of Mitotic Chromosomes from Drosophila Larval Brain. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5389-pdb.prot5389.	0.2	8
53	Drosophila timeless2 Is Required for Chromosome Stability and Circadian Photoreception. Current Biology, 2010, 20, 346-352.	1.8	103
54	Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes and Development, 2010, 24, 1596-1601.	2.7	61

#	Article	IF	CITATIONS
55	Chromosome Banding of Mitotic Chromosomes from <i>Drosophila</i> Larval Brain: Figure 1 Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5390.	0.2	3
56	Fluorescent In Situ Hybridization (FISH) of Mitotic Chromosomes from <i>Drosophila </i> Larval Brain. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5391.	0.2	6
57	Morgana/chp-1, a ROCK Inhibitor Involved in Centrosome Duplication and Tumorigenesis. Developmental Cell, 2010, 18, 486-495.	3.1	43
58	The Drosophila modigliani (moi) gene encodes a HOAP-interacting protein required for telomere protection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2271-2276.	3.3	58
59	Roles of the <i>Drosophila </i> NudE protein in kinetochore function and centrosome migration. Journal of Cell Science, 2009, 122, 1747-1758.	1.2	39
60	TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of <i>Drosophila </i> /i> Journal of Cell Science, 2009, 122, 4526-4534.	1.2	66
61	Drosophila Dgt6 Interacts with Ndc80, Msps/XMAP215, and γ-Tubulin to Promote Kinetochore-Driven MT Formation. Current Biology, 2009, 19, 1839-1845.	1.8	49
62	Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint. Nature Genetics, 2008, 40, 362-366.	9.4	39
63	Drosophila SPD-2 Is an Essential Centriole Component Required for PCM Recruitment and Astral-Microtubule Nucleation. Current Biology, 2008, 18, 303-309.	1.8	124
64	A Role for Very-Long-Chain Fatty Acids in Furrow Ingression during CytokinesisÂin Drosophila Spermatocytes. Current Biology, 2008, 18, 1426-1431.	1.8	82
65	Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference. PLoS Genetics, 2008, 4, e1000126.	1.5	75
66	Australin: a chromosomal passenger protein required specifically for <i>Drosophila melanogaster</i> male meiosis. Journal of Cell Biology, 2008, 180, 521-535.	2.3	25
67	Rab11 Is Required for Membrane Trafficking and Actomyosin Ring Constriction in Meiotic Cytokinesis of <i>Drosophila </i> Males. Molecular Biology of the Cell, 2007, 18, 5034-5047.	0.9	93
68	The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development (Cambridge), 2007, 134, 2183-2193.	1.2	43
69	The Large Isoform of Drosophila melanogaster Heterochromatin Protein 2 Plays a Critical Role in Gene Silencing and Chromosome Structure. Genetics, 2006, 174, 1189-1204.	1.2	19
70	The Class I PITP Giotto Is Required for Drosophila Cytokinesis. Current Biology, 2006, 16, 195-201.	1.8	97
71	The Drosophila Nbs Protein Functions in Multiple Pathways for the Maintenance of Genome Stability. Genetics, 2006, 173, 1447-1454.	1.2	47
72	Chromosome segregation and aneuploidy: introducing a new series in Trends in Cell Biology. Trends in Cell Biology, 2005, 15, 229-230.	3.6	1

#	Article	IF	CITATIONS
73	The mechanism of telomere protection: a comparison between Drosophila and humans. Chromosoma, 2005, 114, 135-145.	1.0	90
74	The Putative Drosophila Transcription Factor Woc Is Required to Prevent Telomeric Fusions. Molecular Cell, 2005, 20, 821-831.	4.5	60
75	Genetic Dissection of Meiotic Cytokinesis in Drosophila Males. Molecular Biology of the Cell, 2004, 15, 2509-2522.	0.9	90
76	Drosophila Citron Kinase Is Required for the Final Steps of Cytokinesis. Molecular Biology of the Cell, 2004, 15, 5053-5063.	0.9	71
77	The Drosophila Kinesin-like Protein KLP67A Is Essential for Mitotic and Male Meiotic Spindle Assembly. Molecular Biology of the Cell, 2004, 15, 121-131.	0.9	75
78	The Drosophila Mre11/Rad50 Complex Is Required to Prevent Both Telomeric Fusion and Chromosome Breakage. Current Biology, 2004, 14, 1360-1366.	1.8	108
79	Feo, the Drosophila Homolog of PRC1, Is Required for Central-Spindle Formation and Cytokinesis. Current Biology, 2004, 14, 1569-1575.	1.8	105
80	The role of HeT-A and TART retrotransposons in Drosophila telomere capping. Genetica, 2003, 117, 311-318.	0.5	10
81	The Drosophila HOAP protein is required for telomere capping. Nature Cell Biology, 2003, 5, 82-84.	4.6	156
82	Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. Journal of Cell Biology, 2003, 160, 993-999.	2.3	64
83	TheDrosophila Cog5Homologue Is Required for Cytokinesis, Cell Elongation, and Assembly of Specialized Golgi Architecture during Spermatogenesis. Molecular Biology of the Cell, 2003, 14, 190-200.	0.9	107
84	Molecular Dissection of Cytokinesis by RNA Interference inDrosophilaCultured Cells. Molecular Biology of the Cell, 2002, 13, 2448-2460.	0.9	226
85	Telomere elongation (Tel), a New Mutation in Drosophila melanogaster That Produces Long Telomeres. Genetics, 2002, 160, 235-245.	1.2	81
86	The Drosophila Protein Asp Is Involved in Microtubule Organization during Spindle Formation and Cytokinesis. Journal of Cell Biology, 2001, 153, 637-648.	2.3	151
87	Advances in Cytokinesis Research. Drosophila Male Meiosis as a Model System for the Study of Cytokinesis in Animal Cells Cell Structure and Function, 2001, 26, 609-617.	0.5	44
88	Relationships between the central spindle and the contractile ring during cytokinesis in animal cells., 2000, 49, 202-208.		49
89	Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biology, 2000, 2, 54-56.	4.6	103
90	Genetic and Molecular Analysis of wings apart-like (wapl), a Gene Controlling Heterochromatin Organization in Drosophila melanogaster. Genetics, 2000, 154, 1693-1710.	1.2	83

#	Article	IF	Citations
91	Spindle Self-organization and Cytokinesis During Male Meiosis in asterless Mutants of Drosophila melanogaster. Journal of Cell Biology, 1998, 142, 751-761.	2.3	164
92	Telomeres and Cell Division in Drosophila melanogaster. , 1997, , 1-12.		0
93	Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis Journal of Cell Biology, 1995, 131, 1243-1259.	2.3	290
94	Chapter 21 Looking at Drosophila Mitotic Chromosomes. Methods in Cell Biology, 1994, 44, 371-391.	0.5	108
95	Functional Elements in Drosophila Melanogaster Heterochromatin. Annual Review of Genetics, 1992, 26, 239-276.	3.2	262
96	Chapter 21 Mutations Affecting Cell Division in Drosophila. Methods in Cell Biology, 1991, 35, 543-586.	0.5	89
97	Transcription of a satellite DNA on twoY chromosome loops ofDrosophila melanogaster. Chromosoma, 1990, 99, 260-266.	1.0	74
98	The peculiar genetic organization of Drosophila heterochromatin. Trends in Genetics, 1986, 2, 17-20.	2.9	53
99	MUTATIONS IN GENES ENCODING ESSENTIAL MITOTIC FUNCTIONS IN <i>DROSOPHILA MELANOGASTER</i> Genetics, 1985, 110, 647-670.	1.2	59
100	Cytological and genetic analysis of the Y chromosome of Drosophila melanogaster. Chromosoma, 1983, 88, 349-373.	1.0	156
101	Cytological dissection of sex chromosome heterochromatin of Drosophila hydei. Chromosoma, 1981, 84, 391-403.	1.0	27
102	Intraspecific polymorphism of sex chromosome heterochromatin in two species of the Anopheles gambiae complex. Chromosoma, 1980, 76, 57-64.	1.0	31
103	3H-Actinomycin-D binding to mitotic chromosomes of Drosophila melanogaster. Chromosoma, 1978, 66, 389-395.	1.0	18
104	Fluorescence banding techniques in the identification of sibling species of the Anopheles gambiae complex. Heredity, 1977, 38, 105-108.	1.2	29
105	« Spontaneous » Endoreduplication in <i>Chinese Hamster</i> Cell Cultures. II. Analysis of the Mitotic Cell Cycle. Caryologia, 1976, 29, 177-186.	0.2	3
106	\hat{A} « Spontaneous \hat{A} » Endoreduplication in < i> Chinese Hamster < /i> Cell Cultures. I. Effect of Growth Conditions. Caryologia, 1976, 29, 155-175.	0.2	4
107	Effects of Hoechst 33258 on human leukocytes in vitro. Cytogenetic and Genome Research, 1976, 17, 114-121.	0.6	16
108	X-ray induction of chromatid interchanges in somatic cells of Drosophila melanogaster: Variations through the cell cycle of the pattern of rejoining. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1976, 35, 101-109.	0.4	22

#	Article	IF	CITATIONS
109	Characterization of Drosophila heterochromatin. Chromosoma, 1976, 57, 351-375.	1.0	141
110	Characterization of Drosophila heterochromatin. Chromosoma, 1976, 57, 377-386.	1.0	105
111	Chemical induction of chromosome aberrations in somatic cells of drosophila melanogaster. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1975, 33, 201-212.	0.4	16
112	Variation with Sex of Irradiation-induced Chromosome Damage in Somatic Cells of Drosophila melanogaster. Nature, 1974, 247, 151-152.	13.7	19
113	The frequency and distribution of isolabelling in Chinese hamster chromosomes after exposure to X-rays. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1974, 23, 229-238.	0.4	23
114	Studies on induced aberrations in diplochromosomes of Chinese hamster cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1973, 20, 87-99.	0.4	17
115	On factors affecting the pattern of rejoining (symmetric or asymmetric) in the formation of chromosomal aberrations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1973, 20, 101-106.	0.4	14
116	The effect of X-rays on labelling pattern of M1 and M2 chromosomes in Chinese hamster cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1973, 17, 101-112.	0.4	46