
Ho-Hsiu Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989405/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	12.8	749
2	A skin-inspired organic digital mechanoreceptor. Science, 2015, 350, 313-316.	12.6	708
3	A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDs. Advanced Materials, 2010, 22, 2468-2471.	21.0	540
4	Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework. ACS Central Science, 2015, 1, 68-76.	11.3	207
5	Wideâ€Range Color Tuning of Iridium Biscarbene Complexes from Blue to Red by Different <i>N</i> â <i>N</i> Ligands: an Alternative Route for Adjusting the Emission Colors. Advanced Materials, 2011, 23, 4933-4937.	21.0	201
6	Entirely, Intrinsically, and Autonomously Selfâ€Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Selfâ€Powered Electronic Skins. Advanced Functional Materials, 2019, 29, 1904626.	14.9	130
7	<i>m</i> â€Indolocarbazole Derivative as a Universal Host Material for RGB and White Phosphorescent OLEDs. Advanced Functional Materials, 2015, 25, 5548-5556.	14.9	111
8	Synthesis of Diimidazolylstilbenes as nâ€∢ype Blue Fluorophores: Alternative Dopant Materials for Highly Efficient Electroluminescent Devices. Advanced Materials, 2012, 24, 5867-5871.	21.0	110
9	Design and Synthesis of Cycloplatinated Polymer Dots as Photocatalysts for Visible-Light-Driven Hydrogen Evolution. ACS Catalysis, 2018, 8, 7766-7772.	11.2	108
10	Efficient delayed fluorescence via triplet–triplet annihilation for deep-blue electroluminescence. Chemical Communications, 2014, 50, 6869-6871.	4.1	104
11	Recent Advances in Visibleâ€Lightâ€Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem, 2020, 12, 689-704.	3.7	100
12	Dualâ€Function Fluorescent Covalent Organic Frameworks: HCl Sensing and Photocatalytic H ₂ Evolution from Water. Advanced Optical Materials, 2020, 8, 2000641.	7.3	97
13	Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Applied Catalysis B: Environmental, 2021, 283, 119659.	20.2	94
14	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	5.1	89
15	Pyrene-containing conjugated organic microporous polymers for photocatalytic hydrogen evolution from water. Catalysis Science and Technology, 2021, 11, 2229-2241.	4.1	87
16	3,6,9,12-Tetrasubstituted Chrysenes: Synthesis, Photophysical Properties, and Application as Blue Fluorescent OLED. Journal of Organic Chemistry, 2014, 79, 267-274.	3.2	66
17	Sulfur-doped triazine-conjugated microporous polymers for achieving the robust visible-light-driven hydrogen evolution. Chemical Engineering Journal, 2021, 421, 129825.	12.7	66
18	Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water. Applied Catalysis B: Environmental, 2021, 285, 119802.	20.2	63

Ho-Hsiu Снои

#	Article	IF	CITATIONS
19	A bio-inspired electronic synapse using solution processable organic small molecule. Journal of Materials Chemistry C, 2019, 7, 1491-1501.	5.5	59
20	Partially-Screened Field Effect and Selective Carrier Injection at Organic Semiconductor/Graphene Heterointerface. Nano Letters, 2015, 15, 7587-7595.	9.1	58
21	Low-toxic cycloplatinated polymer dots with rational design of acceptor co-monomers for enhanced photocatalytic efficiency and stability. Applied Catalysis B: Environmental, 2020, 268, 118436.	20.2	56
22	Triptycene derivatives as high-T _g host materials for various electrophosphorescent devices. Journal of Materials Chemistry, 2010, 20, 798-805.	6.7	55
23	Effect of controlling the number of fused rings on polymer photocatalysts for visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 22924-22929.	10.3	51
24	Conjugated microporous polymers incorporating Thiazolo[5,4-d]thiazole moieties for Sunlight-Driven hydrogen production from water. Chemical Engineering Journal, 2022, 446, 137158.	12.7	48
25	Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H2 and O2 evolution from water splitting. Applied Catalysis B: Environmental, 2022, 316, 121624.	20.2	46
26	Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution. Chemical Engineering Journal, 2022, 430, 132853.	12.7	44
27	Solvent polarity tuning to enhance the crystallinity of 2D-covalent organic frameworks for visible-light-driven hydrogen generation. Journal of Materials Chemistry A, 2022, 10, 12378-12390.	10.3	43
28	New Iridium Dopants for White Phosphorescent Devices: Enhancement of Efficiency and Color Stability by an Energy-Harvesting Layer. ACS Applied Materials & Interfaces, 2013, 5, 6168-6175.	8.0	42
29	Design and synthesis of phenylphosphine oxide-based polymer photocatalysts for highly efficient visible-light-driven hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 5264-5270.	4.9	42
30	Highly efficient deep-blue organic electroluminescent devices doped with hexaphenylanthracene fluorophores. Journal of Materials Chemistry, 2011, 21, 8122.	6.7	37
31	Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298, 120577.	20.2	37
32	Carbazole- and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 11968-11971.	4.1	37
33	Ultrastable Porous Organic Polymers Containing Thianthrene and Pyrene Units as Organic Electrode Materials for Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6442-6452.	5.1	35
34	Design and synthesis of cyclometalated iridium-based polymer dots as photocatalysts for visible light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 32072-32081.	7.1	34
35	Plasmon-Enhanced Solar-Driven Hydrogen Evolution Using Titanium Nitride Metasurface Broadband Absorbers. ACS Photonics, 2021, 8, 3125-3132.	6.6	32
36	Synthesis of conjugated polymers bearing indacenodithiophene and cyclometalated platinum(II) units and their application in organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 109, 111-119.	6.2	31

Ho-Hsiu Снои

#	Article	IF	CITATIONS
37	Synthesis and physical properties of meta-terphenyloxadiazole derivatives and their application as electron transporting materials for blue phosphorescent and fluorescent devices. Journal of Materials Chemistry, 2012, 22, 17792.	6.7	30
38	Flexible Pyrene/Phenanthro[9,10â€ <i>d</i>]imidazoleâ€Based Memristive Devices for Mimicking Synaptic Plasticity. Advanced Intelligent Systems, 2019, 1, 1900008.	6.1	30
39	Synthesis and photo- and electroluminescence properties of 3,6-disubstituted phenanthrenes: alternative host material for blue fluorophores. Chemical Communications, 2011, 47, 8865.	4.1	28
40	Disulfide bond and Diels–Alder reaction bond hybrid polymers with high stretchability, transparency, recyclability, and intrinsic dual healability for skin-like tactile sensing. Journal of Materials Chemistry A, 2021, 9, 6109-6116.	10.3	28
41	Direct sunlight-active Na-doped ZnO photocatalyst for the mineralization of organic pollutants at different pH mediums. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 187-197.	5.3	27
42	Sulfide oxidation tuning in 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b′</i>]dithiophene based dual acceptor copolymers for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 6641-6648.	10.3	25
43	Tunable Pyridyl-Based Conjugated Microporous Polymers for Visible Light-Driven Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 13140-13151.	5.1	24
44	Indacenodithiophene-based N-type conjugated polymers provide highly thermally stable ternary organic photovoltaics displaying a performance of 17.5%. Journal of Materials Chemistry A, 2021, 9, 9780-9790.	10.3	23
45	Highly thermal stable electron-transporting materials using triptycene derivatives for OLEDs. Organic Electronics, 2021, 88, 106013.	2.6	21
46	Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for upgrading biodiesel fuel. Applied Catalysis A: General, 2020, 602, 117707.	4.3	20
47	Highly efficient white organic light-emitting diodes based on broad excimer emission of iridium complex. Organic Electronics, 2010, 11, 1165-1171.	2.6	19
48	Hydrophobic and Hydrophilic Conjugated Polymer Dots as Binary Photocatalysts for Enhanced Visible-Light-Driven Hydrogen Evolution through Förster Resonance Energy Transfer. ACS Applied Materials & Interfaces, 2021, 13, 56554-56565.	8.0	19
49	Autonomously self-healing and ultrafast highly-stretching recoverable polymer through trans-octahedral metal-ligand coordination for skin-inspired tactile sensing. Chemical Engineering Journal, 2022, 438, 135592.	12.7	15
50	Highly efficient organic light-emitting diodes (OLEDs) based on an iridium complex with rigid cyclometalated ligand. Organic Electronics, 2010, 11, 632-640.	2.6	14
51	Unraveling the active sites of Cs-promoted Ru/γ-Al2O3 catalysts for ammonia synthesis. Applied Catalysis B: Environmental, 2022, 310, 121269.	20.2	12
52	Fluorenone/carbazole based bipolar small molecules for non-volatile memory devices. Organic Electronics, 2020, 78, 105584.	2.6	11
53	Realizing Nonvolatile Photomemories with Multilevel Memory Behaviors Using Water-Processable Polymer Dots-Based Hybrid Floating Gates. ACS Applied Electronic Materials, 2021, 3, 1708-1718.	4.3	11
54	Biaxially extended side-chain conjugation of benzodithiophene-based polymer dots for superior photocatalytic stability under visible-light irradiation. Journal of Environmental Chemical Engineering, 2022, 10, 106927.	6.7	11

Ho-Hsiu Снои

#	Article	IF	CITATIONS
55	New selenophene-based low-band gap conjugated polymers for organic photovoltaics. Journal of Polymer Science Part A, 2013, 51, 4550-4557.	2.3	10
56	Iridium-based polymer for memristive devices with integrated logic and arithmetic applications. Journal of Materials Chemistry C, 2020, 8, 16845-16857.	5.5	8
57	Mechanistic Studies of Hydrogen Evolution Reaction on Donor-Acceptor Conjugated Polymer Photocatalysts. Applied Sciences (Switzerland), 2020, 10, 7017.	2.5	5
58	Tactile sensor based on capacitive structure. , 2021, , 31-52.		3
59	Covalent Organic Frameworks: Dualâ€Function Fluorescent Covalent Organic Frameworks: HCl Sensing and Photocatalytic H ₂ Evolution from Water(Advanced Optical Materials 18/2020). Advanced Optical Materials, 2020, 8, 2070074.	7.3	2
60	Mechanistic Understanding of Visible-Light-Driven Hydrogen Evolution on Pt Sites in Organic Nanohybrids Enhanced with Hydroxyl Additives. ACS Applied Energy Materials, 2022, 5, 7950-7955.	5.1	0