Guoqing Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/89893/publications.pdf

Version: 2024-02-01

122 papers	7,063 citations	46984 47 h-index	79 g-index
138	138	138	7811 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chemical Society Reviews, 2018, 47, 5574-5587.	18.7	373
2	An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Materials, $2019,11,.$	3.8	260
3	A Drugâ€Selfâ€Gated Mesoporous Antitumor Nanoplatform Based on pHâ€Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 2017, 27, 1605985.	7.8	255
4	Narrowly Dispersed Hydrophilic Molecularly Imprinted Polymer Nanoparticles for Efficient Molecular Recognition in Real Aqueous Samples Including River Water, Milk, and Bovine Serum. Angewandte Chemie - International Edition, 2013, 52, 1511-1514.	7.2	201
5	Efficient Oneâ€Pot Synthesis of Waterâ€Compatible Molecularly Imprinted Polymer Microspheres by Facile RAFT Precipitation Polymerization. Angewandte Chemie - International Edition, 2011, 50, 11731-11734.	7.2	191
6	Dynamically PEGylated and Borateâ€Coordinationâ€Polymerâ€Coated Polydopamine Nanoparticles for Synergetic Tumorâ€Targeted, Chemoâ€Photothermal Combination Therapy. Small, 2018, 14, e1703968.	5.2	162
7	Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration. Advanced Functional Materials, 2017, 27, 1604617.	7.8	154
8	An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosensors and Bioelectronics, 2010, 26, 976-982.	5.3	141
9	Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials. Journal of the American Chemical Society, 2016, 138, 15078-15086.	6.6	139
10	Thermoâ€Responsive Hydrogel Layers Imprinted with RGDS Peptide: A System for Harvesting Cell Sheets. Angewandte Chemie - International Edition, 2013, 52, 6907-6911.	7.2	130
11	Melatonin reverses H ₂ O ₂ â€induced premature senescence in mesenchymal stem cells via the <scp>SIRT</scp> 1â€dependent pathway. Journal of Pineal Research, 2015, 59, 190-205.	3.4	127
12	Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials, 2016, 83, 169-181.	5.7	122
13	Preparation of molecularly imprinted polymer microspheres via reversible addition–fragmentation chain transfer precipitation polymerization. Polymer, 2009, 50, 2819-2825.	1.8	120
14	Dynamic Introduction of Cell Adhesive Factor via Reversible Multicovalent Phenylboronic Acid/ <i>cis</i> cisciol>ciol>ciol Polymeric Complexes. Journal of the American Chemical Society, 2014, 136, 6203-6206.	6.6	120
15	Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter, 2013, 9, 3840.	1.2	116
16	Advances in biomaterials for preventing tissue adhesion. Journal of Controlled Release, 2017, 261, 318-336.	4.8	115
17	Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers, 2015, 7, 1689-1715.	2.0	114
18	Gelatin Templated Polypeptide Co rossâ€Linked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	3.9	112

#	Article	IF	CITATIONS
19	An Epitopeâ€Imprinted Biointerface with Dynamic Bioactivity for Modulating Cell–Biomaterial Interactions. Angewandte Chemie - International Edition, 2017, 56, 15959-15963.	7.2	110
20	Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomaterialia, 2017, 61, 204-216.	4.1	104
21	Molecularly Imprinted Fluorescent Test Strip for Direct, Rapid, and Visual Dopamine Detection in Tiny Amount of Biofluid. Small, 2019, 15, e1803913.	5.2	103
22	Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation. Biomaterials, 2020, 255, 120197.	5.7	103
23	Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization. Soft Matter, 2011, 7, 8428.	1.2	99
24	Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16127-16137.	3.3	99
25	Graphene oxide based molecularly imprinted polymers with double recognition abilities: The combination of covalent boronic acid and traditional non-covalent monomers. Chemical Engineering Journal, 2016, 290, 220-231.	6.6	97
26	Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression. Biomaterials, 2015, 61, 61-74.	5.7	95
27	Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions. Biomaterials, 2014, 35, 9920-9929.	5.7	94
28	Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small, 2020, 16, e1906644.	5.2	94
29	Preparation of molecularly imprinted polymer microspheres via atom transfer radical precipitation polymerization. Journal of Polymer Science Part A, 2009, 47, 3257-3270.	2.5	88
30	Tumorâ€Triggered Controlled Drug Release from Electrospun Fibers Using Inorganic Caps for Inhibiting Cancer Relapse. Small, 2015, 11, 4284-4291.	5.2	79
31	Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Applied Materials Today, 2018, 12, 294-308.	2.3	77
32	Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection laws in environmental water. Biosensors and Bioelectronics, 2016, 85, 387-394.	5.3	76
33	A Versatile Dynamic Musselâ€Inspired Biointerface: From Specific Cell Behavior Modulation to Selective Cell Isolation. Angewandte Chemie - International Edition, 2018, 57, 7878-7882.	7.2	76
34	Efficient capture, rapid killing and ultrasensitive detection of bacteria by a nano-decorated multi-functional electrode sensor. Biosensors and Bioelectronics, 2018, 101, 52-59.	5.3	75
35	Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology, 2016, 27, 245101.	1.3	70
36	Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples. Sensors and Actuators B: Chemical, 2018, 263, 533-542.	4.0	69

#	Article	IF	Citations
37	Reduced Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for Synergistically Killing Bacteria through Intrinsic Antimicrobial Activity and Photothermal Ablation. ACS Applied Bio Materials, 2019, 2, 747-756.	2.3	68
38	Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radical Biology and Medicine, 2020, 146, 92-106.	1.3	64
39	Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers. Colloids and Surfaces B: Biointerfaces, 2015, 130, 1-9.	2.5	60
40	Mimicking the Nitric Oxideâ€Releasing and Glycocalyx Functions of Endothelium on Vascular Stent Surfaces. Advanced Science, 2020, 7, 2002330.	5.6	59
41	Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects. Accounts of Chemical Research, 2019, 52, 1611-1622.	7.6	56
42	Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. Journal of Controlled Release, 2017, 264, 1-13.	4.8	55
43	Multistimulus Responsive Biointerfaces with Switchable Bioadhesion and Surface Functions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5447-5455.	4.0	55
44	Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chemical Communications, 2015, 51, 644-647.	2.2	51
45	Emerging functional materials based on chemically designed molecular recognition. BMC Materials, 2020, 2, .	6.8	51
46	Fabrication of redox-responsive doxorubicin and paclitaxel prodrug nanoparticles with microfluidics for selective cancer therapy. Biomaterials Science, 2019, 7, 634-644.	2.6	50
47	Mussel-Derived, Cancer-Targeting Peptide as pH-Sensitive Prodrug Nanocarrier. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 23948-23956.	4.0	50
48	Responsive hydrogel-based microneedle dressing for diabetic wound healing. Journal of Materials Chemistry B, 2022, 10, 3501-3511.	2.9	50
49	Melatonin at pharmacological concentrations suppresses osteoclastogenesis via the attenuation of intracellular ROS. Osteoporosis International, 2017, 28, 3325-3337.	1.3	49
50	Tailored Janus silica nanosheets integrating bispecific artificial receptors for simultaneous adsorption of 2,6-dichlorophenol and Pb(<scp>ii</scp>). Journal of Materials Chemistry A, 2019, 7, 16161-16175.	5.2	49
51	Rationally designed hybrid molecularly imprinted polymer foam for highly efficient î»-cyhalothrin recognition and uptake via twice imprinting strategy. Chemical Engineering Journal, 2016, 286, 485-496.	6.6	48
52	Mussel-inspired peptide mimicking: An emerging strategy for surface bioengineering of medical implants. Smart Materials in Medicine, 2021, 2, 26-37.	3.7	48
53	Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioactive Materials, 2022, 8, 309-324.	8.6	48
54	Electrochemical immunosensor for detecting the spore wall protein of Nosema bombycis based on the amplification of hemin/G-quadruplex DNAzyme concatamers functionalized Pt@Pd nanowires. Biosensors and Bioelectronics, 2014, 60, 118-123.	5.3	47

#	Article	IF	CITATIONS
55	Advances in Molecularly Imprinting Technology for Bioanalytical Applications. Sensors, 2019, 19, 177.	2.1	47
56	Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Materials Science and Engineering C, 2016, 61, 437-448.	3.8	45
57	Emerging Theranostic Nanomaterials in Diabetes and Its Complications. Advanced Science, 2022, 9, e2102466.	5 . 6	43
58	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. Applied Materials Today, 2018, 13, 54-63.	2.3	42
59	Comparative study of the molecularly imprinted polymers prepared by reversible addition–fragmentation chain transfer "bulk―polymerization and traditional radical "bulk―polymerization. Journal of Molecular Recognition, 2013, 26, 240-251.	1.1	40
60	Interface-induced growth of boronate-based metal-organic framework membrane on porous carbon substrate for aqueous phase molecular recognition. Chemical Engineering Journal, 2017, 324, 216-227.	6.6	39
61	Alcohol Induces Cellular Senescence and Impairs Osteogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells. Alcohol and Alcoholism, 2017, 52, 289-297.	0.9	39
62	Inhibition of osteoclastogenesis by stem cell-derived extracellular matrix through modulation of intracellular reactive oxygen species. Acta Biomaterialia, 2018, 71, 118-131.	4.1	39
63	Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioactive Materials, 2021, 6, 1308-1317.	8.6	39
64	Recent advances in orthopedic polyetheretherketone biomaterials: Material fabrication and biofunction establishment. Smart Materials in Medicine, 2022, 3, 20-36.	3.7	39
65	Microfluidic Encapsulation of Prickly Zincâ€Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601406.	3.9	38
66	Mussel-Inspired Peptide Coatings on Titanium Implant to Improve Osseointegration in Osteoporotic Condition. ACS Biomaterials Science and Engineering, 2018, 4, 2505-2515.	2.6	38
67	Musselâ€Inspired Ligand Clicking and Ion Coordination on 2D Black Phosphorus for Cancer Multimodal Imaging and Therapy. Small, 2022, 18, .	5. 2	38
68	Healing improvement after rotator cuff repair using gelatin-grafted poly(L-lactide) electrospun fibrous membranes. Journal of Surgical Research, 2015, 193, 33-42.	0.8	36
69	Melatonin Prevents Osteoarthritis-Induced Cartilage Degradation via Targeting MicroRNA-140. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	36
70	Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. Journal of Endocrinology, 2014, 223, 167-180.	1.2	34
71	Full-course inhibition of biodegradation-induced inflammation inÂfibrous scaffold by loading enzyme-sensitive prodrug. Biomaterials, 2015, 53, 202-210.	5.7	34
72	A Hierarchical Porous Bowl-like PLA@MSNs-COOH Composite for pH-Dominated Long-Term Controlled Release of Doxorubicin and Integrated Nanoparticle for Potential Second Treatment. Biomacromolecules, 2015, 16, 1131-1145.	2.6	33

#	Article	IF	CITATIONS
73	Macrophage infiltration of electrospun polyester fibers. Biomaterials Science, 2017, 5, 1579-1587.	2.6	32
74	An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration. Materials Horizons, 2018, 5, 1082-1091.	6.4	31
75	A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. Journal of Materials Chemistry B, 2015, 3, 990-1000.	2.9	30
76	Synergistic mediation of tumor signaling pathways in hepatocellular carcinoma therapy via dual-drug-loaded pH-responsive electrospun fibrous scaffolds. Journal of Materials Chemistry B, 2015, 3, 3436-3446.	2.9	30
77	Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angewandte Chemie - International Edition, 2021, 60, 24526-24533.	7.2	30
78	Spatioâ€Design of Multidimensional Prickly Znâ€Doped CuO Nanoparticle for Efficient Bacterial Killing. Advanced Materials Interfaces, 2016, 3, 1600472.	1.9	29
79	SIRT1â€dependent antiâ€senescence effects of cellâ€deposited matrix on human umbilical cord mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1008-e1021.	1.3	29
80	A Versatile Surface Bioengineering Strategy Based on Mussel-Inspired and Bioclickable Peptide Mimic. Research, 2020, 2020, 7236946.	2.8	29
81	Bioinspired peptide adhesion on Ti implants alleviates wear particle-induced inflammation and improves interfacial osteogenesis. Journal of Colloid and Interface Science, 2022, 605, 410-424.	5.0	28
82	Dynamic Colloidal Photonic Crystal Hydrogels with Self-Recovery and Injectability. Research, 2021, 2021, 9565402.	2.8	27
83	Spontaneous upâ€regulation of SIRT1 during osteogenesis contributes to stem cells' resistance to oxidative stress. Journal of Cellular Biochemistry, 2018, 119, 4928-4944.	1.2	26
84	A Magnetic Dynamic Microbiointerface with Biofeedback Mechanism for Cancer Cell Capture and Release. ACS Applied Materials & Interfaces, 2019, 11, 41019-41029.	4.0	25
85	Upregulation of SIRT1 by Kartogenin Enhances Antioxidant Functions and Promotes Osteogenesis in Human Mesenchymal Stem Cells. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	1.9	24
86	Reversible dougong structured receptor–ligand recognition for building dynamic extracellular matrix mimics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
87	Pomegranateâ€Structured Electrosprayed Microspheres for Longâ€Term Controlled Drug Release. Particle and Particle Systems Characterization, 2015, 32, 529-535.	1.2	21
88	Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioactive Materials, 2022, 9, 1-14.	8.6	21
89	Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway. Materials Science and Engineering C, 2020, 106, 110286.	3.8	20
90	Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. Exploration, 2022, 2, .	5.4	19

#	Article	IF	CITATIONS
91	An Epitopeâ€Imprinted Biointerface with Dynamic Bioactivity for Modulating Cell–Biomaterial Interactions. Angewandte Chemie, 2017, 129, 16175-16179.	1.6	18
92	Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles. Scientific Reports, 2020, 10, 9924.	1.6	17
93	State of the art in development of molecularly imprinted biosensors. View, 2022, 3, 20200170.	2.7	17
94	Bio-inspired antibacterial coatings on urinary stents for encrustation prevention. Journal of Materials Chemistry B, 2022, 10, 2584-2596.	2.9	17
95	A dynamic nano-coordination protein hydrogel for photothermal treatment and repair of infected skin injury. Journal of Materials Chemistry B, 2022, 10, 8181-8185.	2.9	16
96	A Versatile Dynamic Musselâ€Inspired Biointerface: From Specific Cell Behavior Modulation to Selective Cell Isolation. Angewandte Chemie, 2018, 130, 8004-8008.	1.6	15
97	Efficient Inhibition of Wearâ€Debrisâ€Induced Osteolysis by Surface Biomimetic Engineering of Titanium Implant with a Musselâ€Derived Integrinâ€Targeting Peptide. Advanced Biology, 2019, 3, e1800253.	3.0	15
98	In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids and Surfaces B: Biointerfaces, 2017, 158, 363-369.	2.5	13
99	Reversible Self-Assembled Monolayers (rSAMs) as Robust and Fluidic Lipid Bilayer Mimics. Langmuir, 2018, 34, 4107-4115.	1.6	13
100	Biomimetic fabrication of dynamic biointerfaces with optional and diversified bioactivities through reversible covalent and bioorthogonal chemistry. Chemical Engineering Journal, 2020, 398, 125620.	6.6	13
101	Fabrication of the Enzymeâ€less Voltammetric Bilirubin Sensor Based on Solâ€gel Imprinted Polymer. Electroanalysis, 2020, 32, 479-488.	1.5	12
102	Nano-in-micro electronspun membrane: merging nanocarriers and microfibrous scaffold for long-term scar inhibition. Chemical Engineering Journal, 2020, 397, 125405.	6.6	11
103	Typical Fluorescent Sensors Exploiting Molecularly Imprinted Hydrogels for Environmentally and Medicinally Important Analytes Detection. Gels, 2021, 7, 67.	2.1	11
104	A molecularly imprinted antibiotic receptor on magnetic nanotubes for the detection and removal of environmental oxytetracycline. Journal of Materials Chemistry B, 2022, 10, 6777-6783.	2.9	10
105	Biomimetic design of photonic materials for biomedical applications. Acta Biomaterialia, 2021, 121, 143-179.	4.1	9
106	Sialic acid-imprinted mesoporous nanocarriers for tumor cell targeted drug delivery. Colloids and Interface Science Communications, 2021, 42, 100421.	2.0	9
107	A traceable porous bowl-like PLA@C-dots composite for in vitro drug delivery system: A case study of artemisinin. Journal of Controlled Release, 2015, 213, e50.	4.8	8
108	A versatile pH-responsive peptide based dynamic biointerface for tracking bacteria killing and infection resistance. Biomaterials Science, 2021, 9, 5785-5790.	2.6	7

#	Article	IF	CITATIONS
109	Horizon of exosome-mediated bone tissue regeneration: The all-rounder role in biomaterial engineering. Materials Today Bio, 2022, 16, 100355.	2.6	7
110	Nanogel-electrospinning for controlling the release of water-soluble drugs. Journal of Materials Chemistry B, 2016, 4, 2171-2178.	2.9	6
111	Synthetic Receptors With Bioaffinity for Biomedical Applications. , 2019, , 113-142.		6
112	Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angewandte Chemie, 0, , .	1.6	6
113	Bioclickable Mussel-Derived Peptides With Immunoregulation for Osseointegration of PEEK. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780609.	2.0	6
114	Correction: A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. Journal of Materials Chemistry B, 2015, 3, 2012-2012.	2.9	4
115	Lipid Bilayer-like Mixed Self-Assembled Monolayers with Strong Mobility and Clustering-Dependent Lectin Affinity. Langmuir, 2019, 35, 8174-8181.	1.6	4
116	Molecular Imprinting: Molecularly Imprinted Fluorescent Test Strip for Direct, Rapid, and Visual Dopamine Detection in Tiny Amount of Biofluid (Small 1/2019). Small, 2019, 15, 1970006.	5.2	4
117	Surface bioengineering of diverse orthopaedic implants with optional functions via bioinspired molecular adhesion and bioorthogonal conjugations. Biomedical Materials (Bristol), 2021, 16, 024106.	1.7	4
118	Rg3-loaded biodegradable composite electrospun fibers for long-term inhibition of hypertrophic scarring. Journal of Controlled Release, 2015, 213, e118.	4.8	1
119	Controlled release of cell sheet by saccharide and temperature dual-responsive hydrogel layer. Journal of Controlled Release, 2015, 213, e36-e37.	4.8	0
120	Smart bio-interface for spatio-confined dynamic reversible bacterial capture and release. Journal of Controlled Release, 2017, 259, e119.	4.8	0
121	Innenrýcktitelbild: An Epitopeâ€mprinted Biointerface with Dynamic Bioactivity for Modulating Cell–Biomaterial Interactions (Angew. Chem. 50/2017). Angewandte Chemie, 2017, 129, 16307-16307.	1.6	0
122	Synthetic Antibodies: Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications (Small 27/2020). Small, 2020, 16, 2070149.	5.2	0