List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8989253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Redâ€Emitting Copper(I) Complexes with Pyrazine and Pyrimidinyl Ancillary Ligands for White Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2022, 10, 2101999.	3.6	14
2	Multivariate Analysis Identifying [Cu(N^N)(P^P)] ⁺ Design and Device Architecture Enables Firstâ€Class Blue and White Lightâ€Emitting Electrochemical Cells. Advanced Materials, 2022, 34, e2109228.	11.1	18
3	Designing Artificial Fluorescent Proteins: Squaraine‣mrR Biophosphors for High Performance Deepâ€Red Biohybrid Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	4
4	Supramolecular Chalcogenâ€Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angewandte Chemie, 2022, 134, .	1.6	3
5	Supramolecular Chalcogenâ€Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
6	Versatile Biogenic Electrolytes for Highly Performing and Self‣table Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	7.8	8
7	Towards rainbow photo/electro-luminescence in copper(<scp>i</scp>) complexes with the versatile bridged bis-pyridyl ancillary ligand. Dalton Transactions, 2021, 50, 11049-11060.	1.6	11
8	In Situ Ambient Preparation of Perovskite-Poly(<scp> </scp> -lactic acid) Phosphors for Highly Stable and Efficient Hybrid Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 21800-21809.	4.0	11
9	BODIPYâ€Ptâ€Porphyrins Polyads for Efficient Nearâ€Infrared Lightâ€Emitting Electrochemical Cells. Advanced Photonics Research, 2021, 2, 2000188.	1.7	10
10	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
11	Recent Progress on Synthesis, Characterization, and Applications of Metal Halide Perovskites@Metal Oxide. Advanced Functional Materials, 2021, 31, 2104634.	7.8	19
12	Recent Advances Towards Sustainable Materials and Processes for Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2102874.	10.2	3
13	Versatile Homoleptic Naphthylâ€Acetylide Heteronuclear [Pt 2 M 4 (CCâ€Np) 8] (M = Ag, Cu) Phosphors for Highly Efficient White and NIR Hybrid Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901126.	3.6	6
14	Bright, stable, and efficient red light-emitting electrochemical cells using contorted nanographenes. Nanoscale Horizons, 2020, 5, 473-480.	4.1	18
15	Cunning defects: emission control by structural point defects on Cu(<scp>i</scp>)I double chain coordination polymers. Journal of Materials Chemistry C, 2020, 8, 1448-1458.	2.7	11
16	Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels. Nanoscale, 2020, 12, 16980-16986.	2.8	21
17	Origin of the electrocatalytic activity in carbon nanotube fiber counter-electrodes for solar-energy conversion. Nanoscale Advances, 2020, 2, 4400-4409.	2.2	9
18	Meeting High Stability and Efficiency in Hybrid Lightâ€Emitting Diodes Based on SiO ₂ /ZrO ₂ Coated CsPbBr ₃ Perovskite Nanocrystals. Advanced Functional Materials, 2020, 30, 2005401.	7.8	63

#	Article	IF	CITATIONS
19	25 Years of Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 2002879.	7.8	7
20	The use of N^N ligands as an alternative strategy for the sol–gel synthesis of visible-light activated titanias. Journal of Materials Chemistry C, 2020, 8, 12495-12508.	2.7	6
21	Revealing the Impact of Heat Generation Using Nanographene-Based Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 28426-28434.	4.0	24
22	Recent Advances in Solid‣tate Lighting Devices Using Transition Metal Complexes Exhibiting Thermally Activated Delayed Fluorescent Emission Mechanism. Advanced Optical Materials, 2020, 8, 2000260.	3.6	72
23	Advances and Challenges in White Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1908176.	7.8	34
24	White-emitting Protein-Metal Nanocluster Phosphors for Highly Performing Biohybrid Light-Emitting Diodes. Nano Letters, 2020, 20, 2710-2716.	4.5	37
25	Origin of the Exclusive Ternary Electroluminescent Behavior of BNâ€Doped Nanographenes in Efficient Singleâ€Component White Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906830.	7.8	23
26	Key Ionic Electrolytes for Highly Selfâ€Stable Lightâ€Emitting Electrochemical Cells Based on Ir(III) Complexes. Advanced Optical Materials, 2020, 8, 2000295.	3.6	18
27	Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quenching biophosphors. Nature Communications, 2020, 11, 879.	5.8	24
28	Biogenic fluorescent protein–silk fibroin phosphors for high performing light-emitting diodes. Materials Horizons, 2020, 7, 1790-1800.	6.4	18
29	Deciphering Limitations to Meet Highly Stable Bioâ€Hybrid Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1904356.	7.8	13
30	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	18.7	93
31	Carbon nanotubes in hybrid photovoltaics: dye sensitized and perovskites solar cells. , 2019, , 201-248.		1
32	White Lightâ€Emitting Electrochemical Cells Based on Deepâ€Red Cu(I) Complexes. Advanced Optical Materials, 2019, 7, 1900830.	3.6	50
33	Engineered protein-based functional nanopatterned materials for bio-optical devices. Nanoscale Advances, 2019, 1, 3980-3991.	2.2	17
34	Deciphering the Electroluminescence Behavior of Silver(I) omplexes in Lightâ€Emitting Electrochemical Cells: Limitations and Solutions toward Highly Stable Devices. Advanced Functional Materials, 2019, 29, 1901797.	7.8	25
35	Photoluminescent Cu(<scp>i</scp>) <i>vs.</i> Ag(<scp>i</scp>) complexes: slowing down emission in Cu(<scp>i</scp>) complexes by pentacoordinate low-lying excited states. Dalton Transactions, 2019, 48, 9765-9775.	1.6	16
36	White-emitting organometallo-silica nanoparticles for sun-like light-emitting diodes. Materials Horizons, 2019, 6, 130-136.	6.4	32

#	Article	IF	CITATIONS
37	Steuerung des GrenzflĤhenâ€Ladungstransfers und des Fillâ€Factors in CuOâ€basierten GrÄæelâ€Tandemzellen. Angewandte Chemie, 2019, 131, 4097-4102.	1.6	8
38	Controlling Interfacial Charge Transfer and Fill Factors in CuOâ€based Tandem Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 4056-4060.	7.2	32
39	CNT fibres as dual counter-electrode/current-collector in highly efficient and stable dye-sensitized solar cells. Carbon, 2019, 141, 488-496.	5.4	43
40	Rationalizing Fabrication and Design Toward Highly Efficient and Stable Blue Lightâ€Emitting Electrochemical Cells Based on NHC Copper(I) Complexes. Advanced Functional Materials, 2018, 28, 1707423.	7.8	61
41	Beware of Doping: Ta ₂ O ₅ Nanotube Photocatalyst Using CNTs as Hard Templates. ACS Applied Energy Materials, 2018, 1, 1259-1267.	2.5	7
42	Synergy of Catecholâ€Functionalized Zinc Oxide Nanorods and Porphyrins in Layerâ€by‣ayer Assemblies. Chemistry - A European Journal, 2018, 24, 7896-7905.	1.7	8
43	Improving charge injection and charge transport in CuO-based p-type DSSCs – a quick and simple precipitation method for small CuO nanoparticles. Journal of Materials Chemistry C, 2018, 6, 5176-5180.	2.7	21
44	Hybrid Dyeâ€Titania Nanoparticles for Superior Lowâ€Temperature Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1702583.	10.2	29
45	When Fluorescent Proteins Meet White Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2018, 57, 8826-8836.	7.2	49
46	Contextualizing yellow light-emitting electrochemical cells based on a blue-emitting imidazo-pyridine emitter. Polyhedron, 2018, 140, 129-137.	1.0	39
47	Wenn fluoreszierende Proteine und Weißlicht emittierende Dioden aufeinandertreffen. Angewandte Chemie, 2018, 130, 8962-8973.	1.6	3
48	Merging Biology and Solidâ€State Lighting: Recent Advances in Lightâ€Emitting Diodes Based on Biological Materials. Advanced Functional Materials, 2018, 28, 1707011.	7.8	63
49	New Materials and Approaches for Advanced Optoelectronics. ChemPlusChem, 2018, 83, 144-145.	1.3	0
50	Tuning pentacene based dye-sensitized solar cells. Nanoscale, 2018, 10, 8515-8525.	2.8	9
51	Porphyrins as Multifunctional Interconnects in Networks of ZnO Nanoparticles and their Application in Dyeâ€Sensitized Solar Cells. ChemPhotoChem, 2018, 2, 213-222.	1.5	8
52	Peripheral Substitution of Tetraphenyl Porphyrins: Fineâ€Tuning Selfâ€Assembly for Enhanced Electroluminescence. ChemPlusChem, 2018, 83, 254-265.	1.3	4
53	Single-Component Biohybrid Light-Emitting Diodes Using a White-Emitting Fused Protein. ACS Omega, 2018, 3, 15829-15836.	1.6	21
54	Modifying the Semiconductor/Electrolyte Interface in CuO p-Type Dye-Sensitized Solar Cells: Optimization of Iodide/Triiodide-Based Electrolytes. ACS Applied Energy Materials, 2018, 1, 6388-6400.	2.5	13

#	Article	IF	CITATIONS
55	Novel Ligand and Device Designs for Stable Light-Emitting Electrochemical Cells Based on Heteroleptic Copper(I) Complexes. Inorganic Chemistry, 2018, 57, 10469-10479.	1.9	59
56	Light-emitting electrochemical cells based on inorganic metal halide perovskite nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 334001.	1.3	32
57	White perovskite based lighting devices. Chemical Communications, 2018, 54, 8150-8169.	2.2	70
58	Bioâ€Materials for Light Management. Advanced Functional Materials, 2018, 28, 1802462.	7.8	0
59	Light-Emitting Diodes: Micropatterned Down-Converting Coating for White Bio-Hybrid Light-Emitting Diodes (Adv. Funct. Mater. 1/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
60	Implementation of Singleâ€Walled Carbon Nanohorns into Solar Cell Schemes. Advanced Energy Materials, 2017, 7, 1601883.	10.2	22
61	Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices. Advanced Energy Materials, 2017, 7, 1602283.	10.2	47
62	Ïf-Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of heteroleptic copper(<scp>i</scp>) complexes. Dalton Transactions, 2017, 46, 6312-6323.	1.6	51
63	Beyond traditional light-emitting electrochemical cells – a review of new device designs and emitters. Journal of Materials Chemistry C, 2017, 5, 5643-5675.	2.7	210
64	Iodine-Pseudohalogen Ionic Liquid-Based Electrolytes for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33437-33445.	4.0	19
65	Review—Single-Walled Carbon Nanohorn-Based Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, M3140-M3147.	0.9	6
66	Choosing the right nanoparticle size – designing novel ZnO electrode architectures for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 7516-7522.	5.2	8
67	Designing Squaraines to Control Charge Injection and Recombination Processes in NiOâ€based Dye‣ensitized Solar Cells. ChemSusChem, 2017, 10, 2385-2393.	3.6	20
68	Role of the Bridging Group in Bisâ€Pyridyl Ligands: Enhancing Both the Photo―and Electroluminescent Features of Cationic (IPr)Cu ^I Complexes. Chemistry - A European Journal, 2017, 23, 16328-16337.	1.7	36
69	Perovskite Nanoparticles: Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
70	Micropatterned Down onverting Coating for White Bioâ€Hybrid Lightâ€Emitting Diodes. Advanced Functional Materials, 2017, 27, 1601792.	7.8	33
71	Light-Emitting Electrochemical Cells. , 2017, , .		57
72	Benzoporphyrins: Selective Coâ€sensitization in Dyeâ€6ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 7851-7855.	1.7	23

#	Article	IF	CITATIONS
73	Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 14678-14691.	4.0	113
74	Binary Indium–Zinc Oxide Photoanodes for Efficient Dye‧ensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1501075.	10.2	19
75	Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(<scp>i</scp>) complex. Dalton Transactions, 2016, 45, 8984-8993.	1.6	93
76	Easy and versatile coating approach for long-living white hybrid light-emitting diodes. Materials Horizons, 2016, 3, 340-347.	6.4	35
77	Optimizing CuO p-type dye-sensitized solar cells by using a comprehensive electrochemical impedance spectroscopic study. Nanoscale, 2016, 8, 17963-17975.	2.8	31
78	Electroluminescence: From White to Red: Electricâ€Field Dependent Chromaticity of Lightâ€Emitting Electrochemical Cells based on Archetypal Porphyrins (Adv. Funct. Mater. 37/2016). Advanced Functional Materials, 2016, 26, 6736-6736.	7.8	5
79	From White to Red: Electricâ€Field Dependent Chromaticity of Lightâ€Emitting Electrochemical Cells based on Archetypal Porphyrins. Advanced Functional Materials, 2016, 26, 6737-6750.	7.8	49
80	N-Heterotriangulene chromophores with 4-pyridyl anchors for dye-sensitized solar cells. RSC Advances, 2016, 6, 67372-67377.	1.7	20
81	Hydrogen bonding mediated orthogonal and reversible self-assembly of porphyrin sensitizers onto TiO ₂ nanoparticles. Chemical Communications, 2016, 52, 8842-8845.	2.2	21
82	Cunning metal core: efficiency/stability dilemma in metallated porphyrin based light-emitting electrochemical cells. Dalton Transactions, 2016, 45, 13284-13288.	1.6	34
83	Alkynyl bridged cyclometalated Ir ₂ M ₂ clusters: impact of the heterometal in the photo- and electro-luminescence properties. Dalton Transactions, 2016, 45, 3251-3255.	1.6	11
84	Using carbon nanodots as inexpensive and environmentally friendly sensitizers in mesoscopic solar cells. Nanoscale Horizons, 2016, 1, 220-226.	4.1	43
85	Facile and quick preparation of carbon nanohorn-based counter electrodes for efficient dye-sensitized solar cells. Nanoscale, 2016, 8, 7556-7561.	2.8	31
86	Benefits of using BODIPY–porphyrin dyads for developing deep-red lighting sources. Chemical Communications, 2016, 52, 1602-1605.	2.2	60
87	Quaternized Pyridyloxy Phthalocyanines Render Aqueous Electronâ€Đonor Carbon Nanotubes as Unprecedented Supramolecular Materials for Energy Conversion. Advanced Functional Materials, 2015, 25, 7418-7427.	7.8	16
88	Bioinspired Hybrid White Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 5493-5498.	11.1	72
89	Controlling the Chromaticity of Smallâ€Molecule Lightâ€Emitting Electrochemical Cells Based on TIPSâ€Pentacene. Advanced Functional Materials, 2015, 25, 5066-5074.	7.8	68
90	Combining Electronâ€Accepting Phthalocyanines and Nanorodâ€like CuO Electrodes for pâ€Type Dyeâ€Sensitized Solar Cells, Angewandte Chemie - International Edition, 2015, 54, 7688-7692	7.2	55

6

#	Article	IF	CITATIONS
91	Layerâ€byâ€Layer Assemblies of Catecholâ€Functionalized TiO ₂ Nanoparticles and Porphyrins through Electrostatic Interactions. Chemistry - A European Journal, 2015, 21, 5041-5054.	1.7	19
92	Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 12047-12054.	1.5	187
93	Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy and Environmental Science, 2015, 8, 241-246.	15.6	49
94	Dye‣ensitized Solar Cells: Substituting TiCl ₄ –Carbon Nanohorn Interfaces for Dye‣ensitized Solar Cells (Adv. Energy Mater. 6/2014). Advanced Energy Materials, 2014, 4, .	10.2	0
95	18. Carbon nanomaterials as integrative components in dye-sensitized solar cells. , 2014, , 475-502.		0
96	Tuning the Self-Assembly of Rectangular Amphiphilic Cruciforms. Langmuir, 2014, 30, 5957-5964.	1.6	6
97	Integrating metalloporphycenes into p-type NiO-based dye-sensitized solar cells. Chemical Communications, 2014, 50, 11339.	2.2	26
98	Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 1281.	15.6	83
99	Substituting TiCl ₄ –Carbon Nanohorn Interfaces for Dye ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301577.	10.2	20
100	Probing Charge Transfer in Benzodifuran–C ₆₀ Dumbbellâ€Type Electron Donor–Acceptor Conjugates: Ground―and Excitedâ€State Assays. ChemPhysChem, 2013, 14, 2910-2919.	1.0	9
101	Carbon Nanohorns as Integrative Materials for Efficient Dye‧ensitized Solar Cells. Advanced Materials, 2013, 25, 6513-6518.	11.1	46
102	Nanocarbon Hybrids: The Paradigm of Nanoscale Self-Ordering/Self-Assembling by Means of Charge Transfer/Doping Interactions. Journal of Physical Chemistry Letters, 2013, 4, 1489-1501.	2.1	38
103	Ligand-Based Charge-Transfer Luminescence in Ionic Cyclometalated Iridium(III) Complexes Bearing a Pyrene-Functionalized Bipyridine Ligand: A Joint Theoretical and Experimental Study. Inorganic Chemistry, 2013, 52, 885-897.	1.9	56
104	Impact of the Synergistic Collaboration of Oligothiophene Bridges and Ruthenium Complexes on the Optical Properties of Dumbbell‣haped Compounds. Chemistry - A European Journal, 2013, 19, 1476-1488.	1.7	9
105	Beneficial Effects of Liquid Crystalline Phases in Solid‣tate Dye‣ensitized Solar Cells. Advanced Energy Materials, 2013, 3, 657-665.	10.2	48
106	Polyâ€ <i>Ortho</i> â€Functionalizable Tetraarylporphycene Platform–Synthesis of Octacationic Derivatives Towards the Layerâ€by‣ayer Design of Versatile Graphene Oxide Photoelectrodes. Advanced Materials, 2013, 25, 2314-2318.	11.1	34
107	Electron Accepting Porphycenes on Graphene. Advanced Materials, 2013, 25, 2600-2605.	11.1	42
108	Novel nanographene/porphyrin hybrids – preparation, characterization, and application in solar energy conversion schemes. Chemical Science, 2013, 4, 3085.	3.7	57

#	Article	IF	CITATIONS
109	Tuning the Stability of Graphene Layers by Phthalocyanineâ€Based oPPV Oligomers Towards Photo―and Redoxactive Materials. Small, 2013, 9, 2348-2357.	5.2	25
110	Do the Intramolecular ï€ Interactions Improve the Stability of Ionic, Pyridine-Carbene-Based Iridium(III) Complexes?. Journal of Physical Chemistry C, 2013, 117, 8545-8555.	1.5	16
111	Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes. Inorganic Chemistry, 2012, 51, 2263-2271.	1.9	74
112	Luminescent Ionic Transitionâ€Metal Complexes for Lightâ€Emitting Electrochemical Cells. Angewandte Chemie - International Edition, 2012, 51, 8178-8211.	7.2	857
113	Nickel oxide nanostructured electrodes towards perylenediimide-based dye-sensitized solar cells. RSC Advances, 2012, 2, 11495.	1.7	21
114	Near-UV to red-emitting charged bis-cyclometallated iridium(<scp>iii</scp>) complexes for light-emitting electrochemical cells. Dalton Transactions, 2012, 41, 180-191.	1.6	121
115	Simple, Fast, Bright, and Stable Light Sources. Advanced Materials, 2012, 24, 897-900.	11.1	148
116	Light-emitting electrochemical cells based on a supramolecularly-caged phenanthroline-based iridium complex. Chemical Communications, 2011, 47, 3207.	2.2	70
117	Photophysical Properties of Charged Cyclometalated Ir(III) Complexes: A Joint Theoretical and Experimental Study. Inorganic Chemistry, 2011, 50, 7229-7238.	1.9	101
118	Copper(i) complexes for sustainable light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 16108.	6.7	184
119	Recent advances in light-emitting electrochemical cells. Pure and Applied Chemistry, 2011, 83, 2115-2128.	0.9	82
120	Stable and Efficient Solidâ€State Lightâ€Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium Complexes. Advanced Energy Materials, 2011, 1, 282-290.	10.2	84
121	Efficient and Longâ€Living Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2010, 20, 1511-1520.	7.8	147
122	Dumbbellâ€6haped Dinuclear Iridium Complexes and Their Application to Lightâ€Emitting Electrochemical Cells. Chemistry - A European Journal, 2010, 16, 9855-9863.	1.7	51
123	Improving the Turn-On Time of Light-Emitting Electrochemical Cells without Sacrificing their Stability. Chemistry of Materials, 2010, 22, 1288-1290.	3.2	80
124	Intramolecular π-Stacking in a Phenylpyrazole-Based Iridium Complex and Its Use in Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2010, 132, 5978-5980.	6.6	116
125	Zn(ii)-coordination and fluorescence studies of a new polyazamacrocycle incorporating 1H-pyrazole and naphthalene units. Dalton Transactions, 2010, 39, 7741.	1.6	7
126	Long-Living Emitting Electrochemical Cells Based on Supramolecular π-π Interactions. Materials Research Society Symposia Proceedings, 2009, 1197, 31.	0.1	0

#	Article	IF	CITATIONS
127	Archetype Cationic Iridium Complexes and Their Use in Solidâ€&tate Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2009, 19, 3456-3463.	7.8	239
128	Lowest triplet excited states of a novel heteroleptic iridium(III) complex and their role in the emission colour. Computational and Theoretical Chemistry, 2009, 912, 21-26.	1.5	17
129	Deep-Red-Emitting Electrochemical Cells Based on Heteroleptic Bis-chelated Ruthenium(II) Complexes. Inorganic Chemistry, 2009, 48, 3907-3909.	1.9	61
130	A Deep-Red-Emitting Perylenediimideâ~'Iridium-Complex Dyad: Following the Photophysical Deactivation Pathways. Journal of Physical Chemistry C, 2009, 113, 19292-19297.	1.5	39
131	Two are not always better than one: ligand optimisation for long-living light-emitting electrochemical cells. Chemical Communications, 2009, , 2029.	2.2	78
132	Efficient deep-red light-emitting electrochemical cells based on a perylenediimide-iridium-complex dyad. Chemical Communications, 2009, , 3886.	2.2	103
133	Red-light-emitting electrochemical cell using a polypyridyl iridium(iii) polymer. Dalton Transactions, 2009, , 9787.	1.6	52
134	Longâ€Living Lightâ€Emitting Electrochemical Cells – Control through Supramolecular Interactions. Advanced Materials, 2008, 20, 3910-3913.	11.1	185
135	Efficient blue emitting organic light emitting diodes based on fluorescent solution processable cyclic phosphazenes. Organic Electronics, 2008, 9, 155-163.	1.4	63
136	Diazatetraester 1 <i>H</i> -Pyrazole Crowns as Fluorescent Chemosensors for AMPH, METH, MDMA (Ecstasy), and Dopamine. Organic Letters, 2008, 10, 5099-5102.	2.4	24
137	Near-Quantitative Internal Quantum Efficiency in a Light-Emitting Electrochemical Cell. Inorganic Chemistry, 2008, 47, 9149-9151.	1.9	169
138	A Supramolecularly-Caged Ionic Iridium(III) Complex Yielding Bright and Very Stable Solid-State Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2008, 130, 14944-14945.	6.6	138
139	Unexpected large spectral shift from blue to green region in a light-emitting electrochemical cell. , 2008, , .		0
140	Single Molecule Solid State Light Emitting Electrochemical Cells with Lifetimes Superior to 3000 Hours. , 2008, , .		0
141	Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium(iii) complex. Journal of Materials Chemistry, 2007, 17, 5032.	6.7	166
142	Stable Single-Layer Light-Emitting Electrochemical Cell Using 4,7-Diphenyl-1,10-phenanthroline-bis(2-phenylpyridine)iridium(III) Hexafluorophosphate. Journal of the American Chemical Society, 2006, 128, 14786-14787.	6.6	191
143	Improved Stability of Solid State Light Emitting Electrochemical Cells Consisting of Ruthenium and Iridium Complexes. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	1