Vehid Max Salih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8988970/publications.pdf

Version: 2024-02-01

117571 123376 4,011 61 34 61 citations h-index g-index papers 62 62 62 5106 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005, 26, 5221-5230.	5.7	416
2	Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass \hat{A}^{\otimes} composites. Biomaterials, 2008, 29, 1750-1761.	5.7	305
3	Osteochondral tissue engineering: scaffolds, stem cells and applications. Journal of Cellular and Molecular Medicine, 2012, 16, 2247-2270.	1.6	255
4	Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses. Advanced Drug Delivery Reviews, 2013, 65, 405-420.	6.6	223
5	Electrophoretic Deposition of Gentamicin-Loaded Bioactive Glass/Chitosan Composite Coatings for Orthopaedic Implants. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8796-8806.	4.0	162
6	Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. Journal of Materials Science: Materials in Medicine, 2000, 11, 615-620.	1.7	161
7	Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 2010, 31, 2806-2815.	5.7	149
8	Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. Journal of the Royal Society Interface, 2010, 7, 453-465.	1.5	134
9	Effect of Cell Density on Osteoblastic Differentiation and Matrix Degradation of Biomimetic Dense Collagen Scaffolds. Biomacromolecules, 2008, 9, 129-135.	2.6	120
10	Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials, 2004, 25, 2283-2292.	5.7	118
11	In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials, 2007, 28, 2967-2977.	5.7	106
12	Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials, 2005, 26, 4395-4404.	5 . 7	104
13	In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. Journal of Cellular Biochemistry, 2004, 92, 1180-1192.	1.2	92
14	Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; Mechanical andin vitro biological performance. Journal of Biomedical Materials Research Part B, 2005, 72B, 1-8.	3.0	84
15	Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications. Acta Biomaterialia, 2010, 6, 735-742.	4.1	79
16	<i>In vitro</i> biocompatibility of 45S5 Bioglass ^{\hat{A}°} -derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 139-148.	1.3	76
17	Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2007, 18, 237-244.	1.7	73
18	Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomaterialia, 2012, 8, 4181-4190.	4.1	70

#	Article	IF	CITATIONS
19	Structural characterization and physical properties of P2O5–CaO–Na2O–TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies. Acta Biomaterialia, 2012, 8, 333-340.	4.1	70
20	Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition. Acta Biomaterialia, 2006, 2, 547-556.	4.1	66
21	Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dental Materials, 2016, 32, 264-277.	1.6	63
22	The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system. Journal of Materials Science: Materials in Medicine, 2002, 13, 549-556.	1.7	61
23	Zinc-containing phosphate-based glasses for tissue engineering. Biomedical Materials (Bristol), 2007, 2, 11-20.	1.7	61
24	Development of remineralizing, antibacterial dental materials. Acta Biomaterialia, 2009, 5, 2525-2539.	4.1	60
25	Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. Journal of Biomedical Materials Research - Part A, 2005, 74A, 294-305.	2.1	51
26	Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard-tissue implants. Journal of Biomedical Materials Research Part B, 2004, 71B, 66-76.	3.0	50
27	Up-regulation of bone morphogenetic protein receptor IB by growth factors enhances BMP-2-induced human bone cell functions. Journal of Cellular Physiology, 2006, 209, 912-922.	2.0	49
28	Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. Journal of the European Ceramic Society, 2012, 32, 3051-3061.	2.8	47
29	Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. Journal of Biomedical Materials Research Part B, 2004, 68A, 522-530.	3.0	46
30	Glass reinforced hydroxyapatite for hard tissue surgeryâ€"Part II: in vitro evaluation of bone cell growth and function. Biomaterials, 2001, 22, 2817-2824.	5.7	42
31	Soluble phosphate glass fibres for repair of bone-ligament interface. Journal of Materials Science: Materials in Medicine, 2005, 16, 1131-1136.	1.7	41
32	Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. Journal of Materials Science: Materials in Medicine, 2009, 20, 1339-1346.	1.7	40
33	<i>In vitro</i> evaluation of 45S5 Bioglass®â€derived glassâ€ceramic scaffolds coated with carbon nanotubes. Journal of Biomedical Materials Research - Part A, 2011, 99A, 435-444.	2.1	40
34	Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3â€hydroxybutyrate) and microâ€fibrillated bacterial cellulose. Polymer International, 2016, 65, 780-791.	1.6	38
35	Novel poly(3â€hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. Polymer International, 2016, 65, 661-674.	1.6	34
36	Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: Chemical, mechanical and biological considerations. Acta Biomaterialia, 2010, 6, 845-855.	4.1	32

#	Article	IF	Citations
37	Titanium and Strontium-doped Phosphate Glasses as Vehicles for Strontium Ion Delivery to Cells. Journal of Biomaterials Applications, 2011, 25, 877-893.	1.2	30
38	Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment. Journal of the Royal Society Interface, 2009, 6, 401-409.	1.5	29
39	The Relationship between Biofilm and Physical-Chemical Properties of Implant Abutment Materials for Successful Dental Implants. Materials, 2014, 7, 3651-3662.	1.3	27
40	Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives. Acta Biomaterialia, 2012, 8, 313-320.	4.1	26
41	Highly elastomeric poly(3-hydroxyoctanoate) based natural polymer composite for enhanced keratinocyte regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 326-335.	1.8	22
42	Effect of vascular clamp on endothelial integrity of the internal mammary artery. Annals of Thoracic Surgery, 1993, 55, 923-926.	0.7	21
43	Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression. Journal of Tissue Engineering, 2015, 6, 204173141561774.	2.3	21
44	Effect of Normal Synovial Fluid on the Metabolism of Articular Chondrocytes In Vitro. Clinical Orthopaedics and Related Research, 1997, 342, 228???238.	0.7	20
45	The homopolymer poly(3â€hydroxyoctanoate) as a matrix material for soft tissue engineering. Journal of Applied Polymer Science, 2011, 122, 3606-3617.	1.3	20
46	Poly-dl-lactic acid coated Bioglass \hat{A}^{\otimes} scaffolds: toughening effects and osteosarcoma cell proliferation. Journal of Materials Science, 2012, 47, 5661-5672.	1.7	19
47	Development and characterization of a 3D oral mucosa model as a tool for host-pathogen interactions. Journal of Microbiological Methods, 2018, 152, 52-60.	0.7	19
48	Ironâ€phosphate glass fiber scaffolds for the hard–soft interface regeneration: The effect of fiber diameter and flow culture condition on cell survival and differentiation. Journal of Biomedical Materials Research - Part A, 2008, 87A, 1017-1026.	2.1	18
49	<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cells. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1596-1608.	2.1	15
50	Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives. Acta Biomaterialia, 2010, 6, 2695-2703.	4.1	15
51	Changes in bone morphogenetic protein receptor-IB localisation regulate osteogenic responses of human bone cells to bone morphogenetic protein-2. International Journal of Biochemistry and Cell Biology, 2008, 40, 2854-2864.	1.2	14
52	Chondrogenic potential of blood-acquired mesenchymal progenitor cells. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2010, 63, 841-847.	0.5	14
53	Retroviral transduction of alveolar bone cells with a temperature-sensitive SV40 large T antigen. Cell and Tissue Research, 2001, 304, 371-376.	1.5	13
54	Physicochemical, Mechanical, and Biological Properties of Bone Cements Prepared with Functionalized Methacrylates. Journal of Biomaterials Applications, 2004, 19, 147-161.	1.2	12

#	Article	IF	CITATIONS
55	P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineering. Journal of Nanomaterials, 2016, 2016, 1-14.	1.5	11
56	Fabrication of a novel poly(3-hydroxyoctanoate) \hat{a} nanoscale bioactive glass composite film with potential as a multifunctional wound dressing. AIP Conference Proceedings, 2010, , .	0.3	9
57	The Influence of Tetracycline Loading on the Surface Morphology and Biocompatibility of Films Made from P(3HB) Microspheres. Advanced Engineering Materials, 2010, 12, B260.	1.6	6
58	Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour. Acta Biomaterialia, 2006, 2, 143-154.	4.1	5
59	Atypical Mesenchymal Stromal Cell Responses to Topographic Modifications of Titanium Biomaterials Indicate Cytoskeletal- and Genetic Plasticity-Based Heterogeneity of Cells. Stem Cells International, 2019, 2019, 1-16.	1.2	5
60	Brushite and Selfâ€Healing Flexible Polymerâ€ <scp>M</scp> odified Brushite Bone Adhesives for Fibular Osteotomy Repair. Advanced Engineering Materials, 2014, 16, 218-230.	1.6	1
61	Atrial fibrillation in Middle Eastern Arabs and South Asians: a scoping review. Reviews in Cardiovascular Medicine, 2021, 22, 1185.	0.5	1