Margarita Yela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8988506/publications.pdf

Version: 2024-02-01

		361413	330143
57	1,650	20	37
papers	citations	h-index	g-index
64	64	64	1834
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO ₂ measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmospheric Measurement Techniques, 2021, 14, 481-510.	3.1	142
2	Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements. Journal of Geophysical Research, 2007, 112 , .	3.3	133
3	Intercomparison of slant column measurements of NO ₂ and O ₄ by MAX-DOAS and zenith-sky UV and visible spectrometers. Atmospheric Measurement Techniques, 2010, 3, 1629-1646.	3.1	106
4	The new sun-sky-lunar Cimel CE318-T multiband photometer $\hat{a}\in$ a comprehensive performance evaluation. Atmospheric Measurement Techniques, 2016, 9, 631-654.	3.1	86
5	The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI): design, execution, and early results. Atmospheric Measurement Techniques, 2012, 5, 457-485.	3.1	83
6	Assimilated ozone from EOSâ€Aura: Evaluation of the tropopause region and tropospheric columns. Journal of Geophysical Research, 2008, 113, .	3.3	75
7	An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OCIO slant columns: Methods of analysis and results for NO2. Journal of Geophysical Research, 2005, 110, .	3.3	73
8	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	3.1	65
9	Title is missing!. Journal of Atmospheric Chemistry, 1999, 32, 281-314.	3.2	63
10	Pole-to-pole validation of Envisat GOMOS ozone profiles using data from ground-based and balloon sonde measurements. Journal of Geophysical Research, 2004, 109, .	3.3	56
11	Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmospheric Measurement Techniques, 2017, 10, 2455-2475.	3.1	53
12	Intercomparison of NO ₂ , O ₄ and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2. Atmospheric Measurement Techniques, 2020, 13, 2169-2208.	3.1	52
13	Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor. Atmospheric Chemistry and Physics, 2007, 7, 3639-3662.	4.9	49
14	Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Science of the Total Environment, 2018, 645, 710-720.	8.0	38
15	NO ₂ climatology in the northern subtropical region: diurnal, seasonal and interannual variability. Atmospheric Chemistry and Physics, 2008, 8, 1635-1648.	4.9	35
16	Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign. Atmospheric Measurement Techniques, 2021, 14, 1-35.	3.1	32
17	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics, 2021, 21, 17185-17223.	4.9	31
18	Ground/space, passive/active remote sensing observations coupled with particle dispersion modelling to understand the inter-continental transport of wildfire smoke plumes. Remote Sensing of Environment, 2019, 232, 111294.	11.0	30

#	Article	IF	CITATIONS
19	Mid-winter lower stratosphere temperatures in the Antarctic vortex: comparison between observations and ECMWF and NCEP operational models. Atmospheric Chemistry and Physics, 2007, 7, 435-441.	4.9	25
20	Ozone profiles in the high-latitude stratosphere and lower mesosphere measured by the Improved Limb Atmospheric Spectrometer (ILAS)-II: Comparison with other satellite sensors and ozonesondes. Journal of Geophysical Research, 2006, 111 , .	3.3	24
21	Is a scaling factor required to obtain closure between measured and modelled atmospheric O ₄ absorptions? An assessment of uncertainties of measurements and radiative transfer simulations for 2 selected days during the MAD-CAT campaign. Atmospheric Measurement Techniques, 2019, 12, 2745-2817.	3.1	22
22	OCIO, NO2and O3total column observations over Iceland during the winter 1993/94. Geophysical Research Letters, 1996, 23, 3337-3340.	4.0	20
23	Investigating differences in DOAS retrieval codes using MAD-CAT campaign data. Atmospheric Measurement Techniques, 2017, 10, 955-978.	3.1	20
24	Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmospheric Environment, 2019, 202, 190-211.	4.1	20
25	The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Science Reviews, 2018, 214, 1.	8.1	19
26	Assessment of nocturnal aerosol optical depth from lunar photometry at the Izaña high mountain observatory. Atmospheric Measurement Techniques, 2017, 10, 3007-3019.	3.1	18
27	Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign. Atmospheric Measurement Techniques, 2020, 13, 5087-5116.	3.1	18
28	Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover. Sensors, 2022, 29, 2907.	3.8	18
29	An anomalous African dust event and its impact on aerosol radiative forcing on the Southwest Atlantic coast of Europe in February 2016. Science of the Total Environment, 2017, 583, 269-279.	8.0	16
30	Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM. Planetary and Space Science, 2017, 138, 33-43.	1.7	15
31	DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander. Advances in Space Research, 2017, 60, 103-120.	2.6	14
32	Long-term characterisation of the vertical structure of the Saharan Air Layer over the Canary Islands using lidar and radiosonde profiles: implications for radiative and cloud processes over the subtropical Atlantic Ocean. Atmospheric Chemistry and Physics, 2022, 22, 739-763.	4.9	14
33	The spatial scale of ozone depletion events derived from an autonomous surface ozone network in coastal Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 1457-1467.	4.9	13
34	Hemispheric asymmetry in stratospheric NO ₂ trends. Atmospheric Chemistry and Physics, 2017, 17, 13373-13389.	4.9	13
35	A 10-year characterization of the Saharan Air Layer lidar ratio in the subtropical North Atlantic. Atmospheric Chemistry and Physics, 2019, 19, 6331-6349.	4.9	13
36	Climatological study for understanding the aerosol radiative effects at southwest Atlantic coast of Europe. Atmospheric Environment, 2019, 205, 52-66.	4.1	13

#	Article	IF	CITATIONS
37	Reactive bromine in the low troposphere of Antarctica: estimations at two research sites. Atmospheric Chemistry and Physics, 2018, 18, 8549-8570.	4.9	12
38	Sources and physicochemical characteristics of submicron aerosols during three intensive campaigns in Granada (Spain). Atmospheric Research, 2018, 213, 398-410.	4.1	12
39	Behavior of NO2and O3columns during the eclipse of February 26, 1998, as measured by visible spectroscopy. Journal of Geophysical Research, 2000, 105, 3583-3593.	3.3	11
40	Ground-based and OMI-TROPOMI NO2 measurements at El Arenosillo observatory: Unexpected upward trends. Environmental Pollution, 2020, 264, 114771.	7.5	11
41	Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques. Atmospheric Chemistry and Physics, 2021, 21, 15519-15554.	4.9	11
42	Ground-based stratospheric NO2monitoring at Keflavik (Iceland) during EASOE. Geophysical Research Letters, 1994, 21, 1379-1382.	4.0	10
43	Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations. Atmospheric Measurement Techniques, 2013, 6, 703-717.	3.1	8
44	The September 2002 Antarctic vortex major warming as observed by visible spectroscopy and ozone soundings. International Journal of Remote Sensing, 2005, 26, 3361-3376.	2.9	7
45	Recent increase in NO2 levels in the southeast of the Iberian Peninsula. Science of the Total Environment, 2019, 693, 133587.	8.0	7
46	SO2 measurements in a clean coastal environment of the southwestern Europe: Sources, transport and influence in the formation of secondary aerosols. Science of the Total Environment, 2020, 716, 137075.	8.0	7
47	Antarctic ozone variability inside the polar vortex estimated from balloon measurements. Atmospheric Chemistry and Physics, 2014, 14, 217-229.	4.9	6
48	Polar Stratospheric Clouds Detection at Belgrano II Antarctic Station with Visible Ground-Based Spectroscopic Measurements. Remote Sensing, 2021, 13, 1412.	4.0	6
49	Polar Stratospheric Cloud Observations in the 2006/07 Arctic Winter by Using an Improved Micropulse Lidar. Journal of Atmospheric and Oceanic Technology, 2009, 26, 2136-2148.	1.3	5
50	Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes. Scientific Reports, 2021, 11, 4288.	3.3	3
51	Measurements from ground and balloons during APE-GAIA – A polar ozone library. Advances in Space Research, 2005, 36, 835-845.	2.6	2
52	Ozone and carbon monoxide at the Ushuaia GAW-WMO global station. Atmospheric Research, 2019, 217, 1-9.	4.1	2
53	<title>Ozone deficiencies measured during EASOE in Iceland: the 15.1.92 episode</title> ., 1993,,.		0
54	<title>NO2 profiles during the CRISTA-<formula><inf><roman>2</roman></inf></formula> experiment (August 1997) at subtropical regions</title> ., 1998, 3493, 133.		0

Margarita Yela

#	Article	IF	CITATIONS
55	Patterns and trends of ozone and carbon monoxide at Ushuaia (Argentina) observatory. Atmospheric Research, 2021, 255, 105551.	4.1	O
56	Ozone and NO2 monitoring in Southern Spain: The 1994/95 winter record low. , 1997, , 101-112.		0
57	Ground-based validation of the MetOp-A and MetOp-B GOME-2 OCIO measurements. Atmospheric Measurement Techniques, 2022, 15, 3439-3463.	3.1	O