Loredana De Bartolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8988330/publications.pdf

Version: 2024-02-01

142 papers 3,001 citations

32 h-index 51 g-index

151 all docs

151 docs citations

151 times ranked

3125 citing authors

#	Article	IF	CITATIONS
1	Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials, 2007, 28, 5487-5497.	5.7	222
2	A Novel Full-Scale Flat Membrane Bioreactor Utilizing Porcine Hepatocytes: Cell Viability and Tissue-Specific Functions. Biotechnology Progress, 2000, 16, 102-108.	1.3	147
3	Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials, 2002, 23, 2485-2497.	5.7	139
4	Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials, 2009, 30, 2531-2543.	5.7	115
5	Biotransformation and liver-specific functions of human hepatocytes in culture on RGD-immobilized plasma-processed membranes. Biomaterials, 2005, 26, 4432-4441.	5.7	89
6	Improving the bioactivity of Zn(ii)-curcumin based complexes. Dalton Transactions, 2013, 42, 9679.	1.6	85
7	Influence of membrane surface properties on the growth of neuronal cells isolated from hippocampus. Journal of Membrane Science, 2008, 325, 139-149.	4.1	81
8	Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor. Biomaterials, 2006, 27, 4794-4803.	5.7	71
9	Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites. Biomaterials, 2010, 31, 7000-7011.	5.7	70
10	Diffusive and convective transport through hollow fiber membranes for liver cell culture. Journal of Biotechnology, 2005, 117, 309-321.	1.9	68
11	Human hepatocytes and endothelial cells in organotypic membrane systems. Biomaterials, 2011, 32, 8848-8859.	5.7	63
12	The influence of polymeric membrane surface free energy on cell metabolic functions. Journal of Materials Science: Materials in Medicine, 2001, 12, 959-963.	1.7	61
13	Enhanced Oxygen Delivery Reverses Anaerobic Metabolic States in Prolonged Sandwich Rat Hepatocyte Culture. Experimental Cell Research, 1999, 246, 221-232.	1.2	56
14	Coupled transport of amino acids through a supported liquid membrane. I. Experimental optimization. Journal of Membrane Science, 1992, 73, 203-215.	4.1	55
15	Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system. Acta Biomaterialia, 2015, 24, 297-308.	4.1	54
16	Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid–nanohydroxyapatite fiber scaffolds. Journal of Biotechnology, 2015, 204, 53-62.	1.9	54
17	Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. Journal of Colloid and Interface Science, 2018, 531, 126-137.	5.0	54
18	Improved functions of human hepatocytes on NH3 plasma-grafted PEEK-WC–PU membranes. Biomaterials, 2009, 30, 4348-4356.	5.7	51

#	Article	IF	CITATIONS
19	3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells. Biofabrication, 2017, 9, 025022.	3.7	51
20	High level benzodiazepine and ammonia clearance by flat membrane bioreactors with porcine liver cells. Journal of Biotechnology, 2000, 81, 95-105.	1.9	48
21	Neuroprotective Effect of Didymin on Hydrogen Peroxide-Induced Injury in the Neuronal Membrane System. Cells Tissues Organs, 2014, 199, 184-200.	1.3	46
22	The effect of surface roughness of microporous membranes on the kinetics of oxygen consumption and ammonia elimination by adherent hepatocytes. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 641-655.	1.9	45
23	Biodegradable and synthetic membranes for the expansion and functional differentiation of rat embryonic liver cells. Acta Biomaterialia, 2011, 7, 171-179.	4.1	41
24	Bioengineering Organs for Blood Detoxification. Advanced Healthcare Materials, 2018, 7, e1800430.	3.9	41
25	New modified polyetheretherketone membrane for liver cell culture in biohybrid systems: adhesion and specific functions of isolated hepatocytes. Biomaterials, 2004, 25, 3621-3629.	5 . 7	40
26	Novel membranes and surface modification able to activate specific cellular responses. New Biotechnology, 2007, 24, 23-26.	2.7	40
27	Distinct α subunits of the GABA _A receptor are responsible for early hippocampal silent neuronâ€related activities. Hippocampus, 2009, 19, 1103-1114.	0.9	40
28	Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC–polyurethane membranes. Biomaterials, 2005, 26, 6625-6634.	5.7	38
29	Human Hepatocyte Morphology and Functions in a Multibore Fiber Bioreactor. Macromolecular Bioscience, 2007, 7, 671-680.	2.1	37
30	Oxygen mass transfer in a human tissue-engineered trachea. Biomaterials, 2010, 31, 5131-5136.	5 . 7	36
31	Morphology and metabolism of hepatocytes cultured in Petri dishes on films and in non-woven fabrics of hyaluronic acid esters. Biomaterials, 2001, 22, 659-665.	5.7	35
32	Human lymphocyte PEEK-WC hollow fiber membrane bioreactor. Journal of Biotechnology, 2007, 132, 65-74.	1.9	35
33	Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering. International Journal of Pharmaceutics, 2017, 525, 112-122.	2.6	35
34	Sustainable fabrication and pervaporation application of bio-based membranes: Combining a polyhydroxyalkanoate (PHA) as biopolymer and Cyreneâ,, as green solvent. Journal of Membrane Science, 2022, 643, 120061.	4.1	35
35	Polymeric membranes for hybrid liver support devices: The effect of membrane surface wettability on hepatocyte viability and functions. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 1017-1027.	1.9	32
36	Novel PEEK-WC membranes with low plasma protein affinity related to surface free energy parameters. Journal of Materials Science: Materials in Medicine, 2004, 15, 877-883.	1.7	32

#	Article	IF	CITATIONS
37	Rat embryonic liver cell expansion and differentiation on NH3 plasma-grafted PEEK-WC-PU membranes. Biomaterials, 2009, 30, 6514-6521.	5.7	31
38	Human liver microtissue spheroids in hollow fiber membrane bioreactor. Colloids and Surfaces B: Biointerfaces, 2017, 160, 272-280.	2.5	31
39	Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair. International Journal of Pharmaceutics, 2019, 557, 162-169.	2.6	30
40	Membrane Bioreactor for Cell Tissues and Organoids. Artificial Organs, 2006, 30, 793-802.	1.0	28
41	Oxygen transport in hollow fibre membrane bioreactors for hepatic 3D cell culture: A parametric study. Journal of Membrane Science, 2017, 544, 312-322.	4.1	28
42	Fetuin-A gene expression, synthesis and release in primary human hepatocytes cultured in a galactosylated membrane bioreactor. Biomaterials, 2007, 28, 4836-4844.	5.7	27
43	Membrane Bioreactor for Expansion and Differentiation of Embryonic Liver Cells. Industrial & Engineering Chemistry Research, 2013, 52, 10387-10395.	1.8	26
44	Neuronal growth and differentiation on biodegradable membranes. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 106-117.	1.3	25
45	Microtube array membrane bioreactor promotes neuronal differentiation and orientation. Biofabrication, 2017, 9, 025018.	3.7	24
46	Human hepatocyte functions in a galactosylated membrane bioreactor. Journal of Membrane Science, 2007, 302, 27-35.	4.1	23
47	Flat and tubular membrane systems for the reconstruction of hippocampal neuronal network. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 299-313.	1.3	23
48	Neuronal membrane bioreactor as a tool for testing crocin neuroprotective effect in Alzheimer's disease. Chemical Engineering Journal, 2016, 305, 69-78.	6.6	22
49	Galactose Derivative Immobilized Glow Discharge Processed Polyethersulfone Membranes Maintain the Liver Cell Metabolic Activity. Journal of Nanoscience and Nanotechnology, 2006, 6, 2344-2353.	0.9	21
50	Bio-hybrid organs and tissues for patient therapy: A future vision for 2030. Chemical Engineering and Processing: Process Intensification, 2012, 51, 79-87.	1.8	20
51	Human lymphocytes cultured in 3-D bioreactors: Influence of configuration on metabolite transport and reactions. Biomaterials, 2012, 33, 8296-8303.	5.7	19
52	Kinetics of oxygen uptake by cells potentially used in a tissue engineered trachea. Biomaterials, 2014, 35, 6829-6837.	5.7	19
53	Poly(ε-Caprolactone) Hollow Fiber Membranes for the Biofabrication of a Vascularized Human Liver Tissue. Membranes, 2020, 10, 112.	1.4	19
54	Membrane bioreactor for investigation of neurodegeneration. Materials Science and Engineering C, 2019, 103, 109793.	3.8	17

#	Article	IF	CITATIONS
55	Polyethersulfone membrane biohybrid system using pig hepatocytes: Effect of diclofenac on cell biotransformation and synthetic functions. Journal of Membrane Science, 2006, 278, 133-143.	4.1	16
56	A translational approach to micro-inflammation in end-stage renal disease: molecular effects of low levels of interleukin-6. Clinical Science, 2010, 119, 163-174.	1.8	16
57	Gas permeable membrane bioreactor for the co-culture of human skin derived mesenchymal stem cells with hepatocytes and endothelial cells. Journal of Membrane Science, 2018, 563, 694-707.	4.1	15
58	Antiâ€neuroinflammatory effect of daidzein in human hypothalamic <scp>GnRH</scp> neurons in an in vitro membraneâ€based model. BioFactors, 2021, 47, 93-111.	2.6	15
59	Membrane bioreactor using pig hepatocytes for in vitro evaluation of anti-inflammatory drugs. Catalysis Today, 2006, 118, 172-180.	2.2	14
60	Zinc(II) Complexes of Acylpyrazolones Decorated with a Cyclohexyl Group Display Antiproliferative Activity Against Human Breast Cancer Cells. European Journal of Inorganic Chemistry, 2020, 2020, 1027-1039.	1.0	14
61	Technique for the Kinetic Characterization of the Metabolic Reactions of Hepatocytes in Adhesion Culture. Biotechnology Progress, 1998, 14, 500-507.	1.3	13
62	Membrane bioreactors for regenerative medicine: an example of the bioartificial liver. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 146-159.	0.8	12
63	PAN hollow fiber membranes elicit functional hippocampal neuronal network. Journal of Materials Science: Materials in Medicine, 2012, 23, 149-156.	1.7	12
64	Self-assembly of tissue spheroids on polymeric membranes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2090-2103.	1.3	12
65	Development of biohybrid immuno-selective membranes for target antigen recognition. Biosensors and Bioelectronics, 2017, 92, 54-60.	5.3	10
66	Erythropoietin enhances cell proliferation and survival of human fetal neuronal progenitors in normoxia. Brain Research, 2012, 1452, 18-28.	1.1	9
67	Double porous poly (ƕcaprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110493.	2.5	9
68	Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering. Cells Tissues Organs, 2021, , 1-30.	1.3	9
69	Overstimulation of Glutamate Signals Leads to Hippocampal Transcriptional Plasticity in Hamsters. Cellular and Molecular Neurobiology, 2014, 34, 501-509.	1.7	8
70	Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis. Materials Science and Engineering C, 2017, 71, 943-953.	3.8	8
71	Membrane bioreactor to guide hepatic differentiation of human mesenchymal stem cells. Journal of Membrane Science, 2018, 564, 832-841.	4.1	8
72	Recent Strategies Combining Biomaterials and Stem Cells for Bone, Liver and Skin Regeneration. Current Stem Cell Research and Therapy, 2016, 11, 676-691.	0.6	8

#	Article	IF	CITATIONS
73	Potential Implantable Nanofibrous Biomaterials Combined with Stem Cells for Subchondral Bone Regeneration. Materials, 2020, 13, 3087.	1.3	7
74	Nano- and Micro-Porous Chitosan Membranes for Human Epidermal Stratification and Differentiation. Membranes, 2021, 11, 394.	1.4	7
75	Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing. Current Pharmaceutical Design, 2017, 23, 319-327.	0.9	7
76	Advanced Membrane Systems for Tissue Engineering. Current Organic Chemistry, 2017, 21, .	0.9	7
77	Polycaprolactone-Hydroxyapatite Composite Membrane Scaffolds for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 2013, 1502, 1.	0.1	6
78	Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers. Colloids and Surfaces B: Biointerfaces, 2016, 146, 352-362.	2.5	6
79	New Zinc-Based Active Chitosan Films: Physicochemical Characterization, Antioxidant, and Antimicrobial Properties. Frontiers in Chemistry, 0, 10 , .	1.8	6
80	H ₂ /NH ₃ Plasmaâ€Grafting of PEEKâ€WCâ€PU Membrane to Improve their cytoâ€Compatibility with Hepatocytes. Plasma Processes and Polymers, 2009, 6, S81.	1.6	5
81	Neuronal Differentiation Modulated by Polymeric Membrane Properties. Cells Tissues Organs, 2017, 204, 164-178.	1.3	5
82	Automation and control system for fluid dynamic stability in hollowâ€fiber membrane bioreactor for cell culture. Journal of Chemical Technology and Biotechnology, 2018, 93, 710-719.	1.6	5
83	PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds. Membranes, 2021, 11, 112.	1.4	5
84	Membrane Systems for Tissue Engineering 2020. Membranes, 2021, 11, 763.	1.4	4
85	Multifunctional membranes for lipidic nanovesicle capture. Separation and Purification Technology, 2022, 298, 121561.	3.9	4
86	Human galactosylated membrane bioreactor for the long-term maintenance of liver specific functions. Desalination, 2006, 199, 147-149.	4.0	3
87	Distinct $\hat{l}\pm$ GABAAR subunits influence structural and transcriptional properties of CA1 hippocampal neurons. Neuroscience Letters, 2011, 496, 106-110.	1.0	3
88	Application of the Co-culture Membrane System Pointed to a Protective Role of Catestatin on Hippocampal Plus Hypothalamic Neurons Exposed to Oxygen and Glucose Deprivation. Molecular Neurobiology, 2017, 54, 7369-7381.	1.9	3
89	Biocompatibility of Modified Polyetheretherketone (Peek-Wc) Membranes: Human Plasma Adsorption. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	2
90	Diffusive and convective transport in HF membrane reactors for biomedical applications. Desalination, 2006, 199, 135-137.	4.0	2

#	Article	IF	Citations
91	Human lymphocyte hollow fiber bioreactor. Desalination, 2006, 199, 141-143.	4.0	2
92	Effect of native and NH3 plasma-functionalized polymeric membranes on the gene expression profiles of primary hepatocytes. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 486-496.	1.3	2
93	Polymeric Membranes for the Biofabrication of Tissues and Organs. , 2013, , 81-94.		2
94	Biohybrid Membrane Systems for Testing Molecules and Stem Cell Therapy in Neuronal Tissue Engineering. Current Pharmaceutical Design, 2017, 23, 3858-3870.	0.9	2
95	Biofabrication of Layered Membrane Systems by Using Human Hepatocytes and Endothelial Cells: A Comparative Study. Current Tissue Engineering, 2013, 2, 109-118.	0.2	2
96	Hollow Fiber Membrane Bioreactor for Cell Growth. , 2016, , 953-955.		2
97	Novel bioactive polymeric membranes to elicit specific human hepatocyte responses. Desalination, 2006, 199, 261-262.	4.0	1
98	Editorial (Thematic Issue: New Approaches in Stem Cell Technology and Innovative Biomaterials for) Tj ETQq0 0 (604-604.	OrgBT /Ov	erlock 10 Tf 5 1
99	Editorial: Nanotechnology and Biomaterials for Cell and Drug Therapy. Current Pharmaceutical Design, 2017, 23, 3757-3758.	0.9	1
100	Bioartificial Organs: Ongoing Research and Future Trends. Cells Tissues Organs, 2022, , 125-127.	1.3	1
101	Cell Adhesion. , 2014, , 1-2.		1
102	Performance of a flat membrane bioreactor utilizing porcine hepatocytes cultured in an extracellular matrix., 2000,, 585-595.		1
103	Hepatocellular functions of human liver cells in oxygen-permeable membrane device. Desalination, 2006, 200, 488-490.	4.0	O
104	Human Liver Organotypic Membrane Systems. Procedia Engineering, 2012, 44, 456-458.	1.2	0
105	Artificial Lung. , 2014, , 1-2.		0
106	Comparison between a non-linear and linearized three-compartment model of a bioreactor for hepatocyte culturing. IFAC-PapersOnLine, 2015, 48, 703-704.	0.5	0
107	Acute Kidney Injury (AKI)., 2015,, 1-1.		0
108	Cell Culture. , 2016, , 336-338.		0

#	Article	IF	CITATIONS
109	New Advanced Biomaterials for Tissue and Organ Regeneration/Repair. Cells Tissues Organs, 2017, 204, 123-124.	1.3	0
110	4.12 Membrane Approaches for Liver and Neuronal Tissue Engineering., 2017,, 248-271.		0
111	Inaugural Young Investigator Issue for Cells Tissues Organs. Cells Tissues Organs, 2021, , .	1.3	0
112	Membrane Biocompatibility., 2014, , 1-2.		0
113	Cell Adhesion in Bio Artificial Organs. , 2014, , 1-2.		0
114	Embryonic Stem (ES) Cell., 2014, , 1-2.		0
115	Cell Culture. , 2015, , 1-3.		0
116	Membrane Bioreactors for Cell Growth. , 2015, , 1-3.		0
117	Artificial Liver, Membrane Operations. , 2015, , 1-3.		0
118	Central Nervous System in Relation to Membranes. , 2015, , 1-4.		0
119	Artificial Blood Cell. , 2015, , 1-3.		0
120	Hollow Fiber Membrane Bioreactor for Cell Growth. , 2015, , 1-3.		0
121	Membrane Biomaterial. , 2015, , 1-2.		0
122	Embryonic Stem (ES) Cell. , 2016, , 672-673.		0
123	Cell Adhesion. , 2016, , 333-334.		0
124	Langerhans Islet. , 2016, , 1087-1089.		0
125	Artificial Liver, Membrane Operations. , 2016, , 119-122.		0
126	Central Nervous System in Relation to Membranes. , 2016, , 349-352.		0

#	Article	IF	CITATIONS
127	Acute Kidney Injury (AKI)., 2016,, 7-7.		О
128	Artificial Blood Cell. , 2016, , 113-115.		0
129	Artificial Lung. , 2016, , 122-123.		O
130	Cell Adhesion in Bioartificial Organs. , 2016, , 334-336.		0
131	Cell Separation. , 2016, , 342-343.		O
132	7 Membrane bioartificial organs. , 2017, , 187-240.		0
133	6 Cell-membrane interactions. , 2017, , 165-186.		O
134	1 Natural and synthetic membranes. , 2017, , 1-48.		0
135	2 Basic issues in membrane separation for biomedical devices. , 2017, , 49-80.		O
136	3 Artificial organs. , 2017, , 81-118.		0
137	8 Regulatory framework and ethical issues. , 2017, , 241-260.		O
138	5 Engineering of membrane bio-hybrid organs. , 2017, , 139-164.		0
139	4 Blood-membrane interactions. , 2017, , 119-138.		O
140	Membrane Bioreactors for Bioartificial Organs. , 2019, , 394-413.		0
141	Membrane Bioreactors for Production and Separation. , 2019, , 374-393.		0
142	Membrane and Membrane Bioreactors Applied to Health and Life Sciences. Membranes, 2022, 12, 598.	1.4	0