Jean-Claude Scimeca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship between the oxidative status and the tumor growth in transplanted triple-negative 4T1 breast tumor mice after oral administration of rhenium(I)-diselenoether. Journal of Trace Elements in Medicine and Biology, 2022, 71, 126931.	1.5	3
2	Monitoring of in-vitro ultrasonic stimulation of cells by numerical modeling. Ultrasonics, 2022, 124, 106714.	2.1	1
3	Nano-engineered biomaterials: Safety matters and toxicity evaluation. Materials Today Advances, 2022, 15, 100260.	2.5	14
4	Proteomic analysis identified LBP and CD14 as key proteins in blood/biphasic calcium phosphate microparticle interactions. Acta Biomaterialia, 2021, 127, 298-312.	4.1	3
5	Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today, 2021, 26, 2734-2742.	3.2	28
6	Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds. Pharmaceutics, 2019, 11, 556.	2.0	42
7	Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e854-e866.	1.3	20
8	Design and properties of a novel radiopaque injectable apatitic calcium phosphate cement, suitable for imageâ€guided implantation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2786-2795.	1.6	11
9	Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets. International Journal of Molecular Sciences, 2018, 19, 148.	1.8	28
10	The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discovery Today, 2017, 22, 1084-1091.	3.2	11
11	Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation. Acta Biomaterialia, 2017, 57, 462-471.	4.1	5
12	Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy. Scientific Reports, 2017, 7, 12197.	1.6	43
13	Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases. Biochemical Pharmacology, 2016, 116, 11-21.	2.0	14
14	Therapeutic strategies for treating osteolytic bone metastases. Drug Discovery Today, 2014, 19, 1419-1426.	3.2	43
15	Adaptive Immune Response Inhibits Ectopic Mature Bone Formation Induced by BMSCs/BCP/Plasma Composite in Immune-Competent Mice. Tissue Engineering - Part A, 2014, 20, 2950-2962.	1.6	24
16	Gallium as a potential candidate for treatment of osteoporosis. Drug Discovery Today, 2012, 17, 1127-1132.	3.2	43
17	Monocytes differentiation upon treatment with a peptide corresponding to the Câ€ŧerminus of activated T cellâ€expressed Tirc7 protein. Journal of Cellular Physiology, 2012, 227, 3088-3098.	2.0	0
18	Molecular effects of gallium on osteoclastic differentiation of mouse and human monocytes. Biochemical Pharmacology, 2012, 83, 671-679.	2.0	34

JEAN-CLAUDE SCIMECA

#	Article	IF	CITATIONS
19	Fate of Bone Marrow Stromal Cells in a Syngenic Model of Bone Formation. Tissue Engineering - Part A, 2011, 17, 2267-2278.	1.6	29
20	Gallium modulates osteoclastic bone resorption <i>in vitro</i> without affecting osteoblasts. British Journal of Pharmacology, 2010, 159, 1681-1692.	2.7	69
21	Biphasic Calcium Phosphate Microparticles for Bone Formation: Benefits of Combination with Blood Clot. Tissue Engineering - Part A, 2010, 16, 3495-3505.	1.6	39
22	Osteoclastic differentiation of mouse and human monocytes in a plasma clot/biphasic calcium phosphate microparticles composite. , 2010, 20, 379-392.		24
23	Poly(adp-ribose) Polymerase-1 Regulates Tracp Gene Promoter Activity During RANKL-Induced Osteoclastogenesis. Journal of Bone and Mineral Research, 2008, 23, 564-571.	3.1	18
24	Cloning and Use of a Coral 36B4 Gene to Study the Differential Expression of Coral Genes Between Light and Dark Conditions. Marine Biotechnology, 2008, 10, 653-663.	1.1	28
25	Differential Binding of Poly(ADP-Ribose) Polymerase-1 and JunD/Fra2 Accounts for RANKL-Induced Tcirg1 Gene Expression During Osteoclastogenesis. Journal of Bone and Mineral Research, 2007, 22, 975-983.	3.1	25
26	Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials, 2006, 27, 3256-3264.	5.7	109
27	RANKL Treatment Releases the Negative Regulation of the Poly(ADP-Ribose) Polymerase-1 on Tcirg1 Gene Expression During Osteoclastogenesis. Journal of Bone and Mineral Research, 2006, 21, 1757-1769.	3.1	24
28	Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1663, 117-126.	1.4	158
29	Novel mutations in theTCIRG1gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Human Mutation, 2003, 21, 151-157.	1.1	47
30	Family of SRY/Sox proteins is involved in the regulation of the mouseMsh4 (MutS homolog 4) gene expression. Molecular Reproduction and Development, 2001, 60, 172-180.	1.0	8
31	The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone, 2000, 26, 207-213.	1.4	193
32	Cloning and Recombinant Expression of a Novel Mouse-secreted Phospholipase A2. Journal of Biological Chemistry, 1999, 274, 19152-19160.	1.6	110
33	Structure, chromosome localization, and tissue distribution of the mouse twik K+ channel gene. FEBS Letters, 1998, 425, 310-316.	1.3	33
34	Essential role of calcium in the regulation of MAP kinase phosphatase-1 expression. Oncogene, 1997, 15, 717-725.	2.6	58
35	Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP. FEBS Letters, 1995, 357, 290-296.	1.3	78
36	Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. Journal of Biological Chemistry, 1993, 268, 9803-10.	1.6	188

#	Article	IF	CITATIONS
37	Insulin and orthovanadate stimulate multiple phosphotyrosine-containing serine kinases. Molecular and Cellular Biochemistry, 1992, 109, 139-147.	1.4	7
38	Nerve growth factor-induced phosphorylation cascade in PC12 pheochromocytoma cells. Association of S6 kinase II with the microtubule-associated protein kinase, ERK1. Journal of Biological Chemistry, 1992, 267, 17369-74.	1.6	43
39	Tyrosine and threonine phosphorylation of an immunoaffinity-purified 44-kDa MAP kinase. Biochemistry, 1991, 30, 9313-9319.	1.2	30
40	Phenylarsine oxide stimulates a cytosolic tyrosine kinase activity and glucose transport in mouse fibroblasts. Experimental Cell Research, 1991, 197, 300-306.	1.2	18
41	Insulin binding to its receptor induces a conformational change in the receptor C-terminus. Biochemistry, 1990, 29, 4634-4641.	1.2	60
42	Antiphosphotyrosine antibodies modulate insulin. Cellular Signalling, 1989, 1, 195-204.	1.7	20