List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends, Drivers, and Mitigation of CO2 Emissions in the Guangdong–Hong Kong–Macao Greater Bay Area. Engineering, 2023, 23, 138-148.	3.2	8
2	Entropy-based Chinese city-level MRIO table framework. Economic Systems Research, 2022, 34, 519-544.	1.2	51
3	Large inter-city inequality in consumption-based CO2 emissions for China's pearl river basin cities. Resources, Conservation and Recycling, 2022, 176, 105923.	5.3	34
4	Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 2022, 12, 241-248.	8.1	51
5	Using a linear regression approach to sequential interindustry model for time-lagged economic impact analysis. Structural Change and Economic Dynamics, 2022, 62, 399-406.	2.1	4
6	Emission accounting and drivers in East African countries. Applied Energy, 2022, 312, 118805.	5.1	22
7	Thank You to Our 2021 Reviewers. Earth's Future, 2022, 10, .	2.4	0
8	Life cycle assessment shows that retrofitting coal-fired power plants with fuel cells will substantially reduce greenhouse gas emissions. One Earth, 2022, 5, 392-402.	3.6	17
9	Fullâ€scale, near realâ€ŧime multiâ€regional input–output table for the global emerging economies (EMERGING). Journal of Industrial Ecology, 2022, 26, 1218-1232.	2.8	12
10	The heterogeneous role of energy policies in the energy transition of Asia–Pacific emerging economies. Nature Energy, 2022, 7, 588-596.	19.8	25
11	The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health, The, 2021, 6, e64-e81.	4.7	106
12	Economic footprint of California wildfires in 2018. Nature Sustainability, 2021, 4, 252-260.	11.5	131
13	Unsustainable imbalances and inequities in Carbon-Water-Energy flows across the EU27. Renewable and Sustainable Energy Reviews, 2021, 138, 110550.	8.2	11
14	Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nature Climate Change, 2021, 11, 200-206.	8.1	129
15	Reply to: Observed impacts of the COVID-19 pandemic on global trade. Nature Human Behaviour, 2021, 5, 308-309.	6.2	2
16	Consideration of culture is vital if we are to achieve the Sustainable Development Goals. One Earth, 2021, 4, 307-319.	3.6	60
17	Reduction of Human Mobility Matters during Early COVID-19 Outbreaks: Evidence from India, Japan and China. International Journal of Environmental Research and Public Health, 2021, 18, 2826.	1.2	2
18	Consideration of culture is vital if we are to achieve the Sustainable Development Goals. One Earth, 2021, 4, 459.	3.6	2

#	Article	IF	CITATIONS
19	PM2.5 reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions. One Earth, 2021, 4, 448-458.	3.6	31
20	Negligible impacts of early COVID-19 confinement on household carbon footprints in Japan. One Earth, 2021, 4, 553-564.	3.6	16
21	The driving forces behind the change in energy consumption in developing countries. Environmental Research Letters, 2021, 16, 054002.	2.2	18
22	Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China. Nature Communications, 2021, 12, 1938.	5.8	96
23	å›åœ°è€Œå¼,的气候åĩ化å¥åº·å½±å"需è¦å›åœ°è€Œå¼,的岔å⁻¹æŽªæ–½. Chinese Science Bulletin,	2024,,.	5
24	Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure. Nature Sustainability, 2021, 4, 739-747.	11.5	84
25	Close the carbon loophole. One Earth, 2021, 4, 587-590.	3.6	1
26	Supply chain effects of China's fast growing marine economy on greenhouse gas emissions. Environmental Research Letters, 2021, 16, 054061.	2.2	8
27	Virtual carbon and water flows embodied in globalÂfashionÂtrade - a case study of denim products. Journal of Cleaner Production, 2021, 303, 127080.	4.6	25
28	Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planetary Health, The, 2021, 5, e356-e367.	5.1	63
29	Economic impacts of climate-induced crop yield changes: evidence from agri-food industries in six countries. Climatic Change, 2021, 166, 1.	1.7	8
30	Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development. Climatic Change, 2021, 166, 1.	1.7	11
31	Japanese carbon emissions patterns shifted following the 2008 financial crisis and the 2011 Tohoku earthquake. Communications Earth & Environment, 2021, 2, .	2.6	15
32	CO2 emission accounts of Russia's constituent entities 2005–2019. Scientific Data, 2021, 8, 172.	2.4	8
33	Adaptive CO2 emissions mitigation strategies of global oil refineries in all age groups. One Earth, 2021, 4, 1114-1126.	3.6	22
34	Drivers of fluctuating embodied carbon emissions in international services trade. One Earth, 2021, 4, 1322-1332.	3.6	16
35	Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Scientific Data, 2021, 8, 244.	2.4	65
36	Decoupling without outsourcing? How China's consumption-based CO2 emissions have plateaued. IScience, 2021, 24, 103130.	1.9	34

#	Article	IF	CITATIONS
37	Heterogeneity of consumption-based carbon emissions and driving forces in Indian states. Advances in Applied Energy, 2021, 4, 100039.	6.6	24
38	How do weather and climate change impact the COVID-19 pandemic? Evidence from the Chinese mainland. Environmental Research Letters, 2021, 16, 014026.	2.2	8
39	Impact on China's CO ₂ emissions from COVID-19 pandemic. Chinese Science Bulletin, 2021, 66, 1912-1922.	0.4	9
40	The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947.	4.7	41
41	Global Environmental Change: 30Âyears of interdisciplinary research on the human and policy dimensions of environmental change. Global Environmental Change, 2021, 71, 102416.	3.6	2
42	Monthly direct and indirect greenhouse gases emissions from household consumption in the major Japanese cities. Scientific Data, 2021, 8, 301.	2.4	27
43	Carbon transfer within China: Insights from production fragmentation. Energy Economics, 2020, 86, 104647.	5.6	34
44	Carbon emissions in countries that failed to ratify the intended nationally determined contributions: A case study of Kyrgyzstan. Journal of Environmental Management, 2020, 255, 109892.	3.8	19
45	Global COVID-19 pandemic demands joint interventions for the suppression of future waves. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26151-26157.	3.3	33
46	A 2015 inventory of embodied carbon emissions for Chinese power transmission infrastructure projects. Scientific Data, 2020, 7, 318.	2.4	18
47	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	5.8	420
48	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	5.8	30
49	Five tips for China to realize its co-targets of climate mitigation and Sustainable Development Goals (SDGs). Geography and Sustainability, 2020, 1, 245-249.	1.9	12
50	Satellite-based estimates of decline and rebound in China's CO ₂ emissions during COVID-19 pandemic. Science Advances, 2020, 6, .	4.7	136
51	China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits. One Earth, 2020, 3, 777-787.	3.6	37
52	Dynamic Driving Forces of India's Emissions From Production and Consumption Perspectives. Earth's Future, 2020, 8, e2020EF001485.	2.4	16
53	Critical Rare-Earth Elements Mismatch Global Wind-Power Ambitions. One Earth, 2020, 3, 116-125.	3.6	72
54	Enlarging Regional Disparities in Energy Intensity within China. Earth's Future, 2020, 8, e2020EF001572.	2.4	14

#	Article	IF	CITATIONS
55	Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nature Climate Change, 2020, 10, 845-850.	8.1	32
56	Province-level fossil fuel CO2 emission estimates for China based on seven inventories. Journal of Cleaner Production, 2020, 277, 123377.	4.6	19
57	Embodied carbon emissions in China-US trade. Science China Earth Sciences, 2020, 63, 1577-1586.	2.3	32
58	CO ₂ Emissions Embodied in International Migration from 1995 to 2015. Environmental Science & amp; Technology, 2020, 54, 12530-12538.	4.6	34
59	Japan prefectural emission accounts and socioeconomic data 2007 to 2015. Scientific Data, 2020, 7, 233.	2.4	8
60	Sharing tableware reduces waste generation, emissions and water consumption in China's takeaway packaging waste dilemma. Nature Food, 2020, 1, 552-561.	6.2	52
61	Embodied carbon emissions in the supply chains of multinational enterprises. Nature Climate Change, 2020, 10, 1096-1101.	8.1	114
62	Production Globalization Makes China's Exports Cleaner. One Earth, 2020, 2, 468-478.	3.6	22
63	Global supply-chain effects of COVID-19 control measures. Nature Human Behaviour, 2020, 4, 577-587.	6.2	521
64	Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods. Risk Analysis, 2020, 40, 1612-1631.	1.5	18
65	Supply Constraint from Earthquakes in Japan in Input–Output Analysis. Risk Analysis, 2020, 40, 1811-1830.	1.5	10
66	Cityâ€levelÂwater withdrawal in China: Accounting methodology and applications. Journal of Industrial Ecology, 2020, 24, 951-964.	2.8	13
67	Regional determinants of China's consumption-based emissions in the economic transition. Environmental Research Letters, 2020, 15, 074001.	2.2	198
68	Environmental Regulation and Enterprise Innovation: A Review. Business Strategy and the Environment, 2020, 29, 1465-1478.	8.5	246
69	Methodology and application of flood footprint accounting in a hypothetical multiple two-flood event. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190209.	1.6	11
70	China CO2 emission accounts 2016–2017. Scientific Data, 2020, 7, 54.	2.4	527
71	Low-carbon development via greening global value chains: a case study of Belarus. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200024.	1.0	6
72	Evaluating China's fossil-fuel CO ₂ emissions from a comprehensive dataset of nine inventories. Atmospheric Chemistry and Physics, 2020, 20, 11371-11385.	1.9	36

#	Article	IF	CITATIONS
73	Flood footprint modelling to evaluate the flood risk management benefits of blue–green infrastructure. , 2020, , 133-152.		2
74	Energy and air pollution benefits of household fuel policies in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16773-16780.	3.3	152
75	Drivers of provincial SO2 emissions in China – Based on multi-regional input-output analysis. Journal of Cleaner Production, 2019, 238, 117893.	4.6	35
76	Can virtual water trade save water resources?. Water Research, 2019, 163, 114848.	5.3	59
77	The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers. Nature Communications, 2019, 10, 3281.	5.8	28
78	Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nature Communications, 2019, 10, 3405.	5.8	158
79	Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013–2017. Science China Earth Sciences, 2019, 62, 1847-1856.	2.3	146
80	Flood footprint assessment: a new approach for flood-induced indirect economic impact measurement and post-flood recovery. Journal of Hydrology, 2019, 579, 124204.	2.3	36
81	The Slowdown in China's Carbon Emissions Growth in the New Phase of Economic Development. One Earth, 2019, 1, 240-253.	3.6	138
82	Quantity and quality of China's water from demand perspectives. Environmental Research Letters, 2019, 14, 124004.	2.2	7
83	Kazakhstan's CO2 emissions in the post-Kyoto Protocol era: Production- and consumption-based analysis. Journal of Environmental Management, 2019, 249, 109393.	3.8	30
84	Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17193-17200.	3.3	219
85	The social perspective on island energy transitions: Evidence from the Aegean archipelago. Applied Energy, 2019, 255, 113725.	5.1	18
86	Grand Challenges Cannot Be Treated in Isolation. One Earth, 2019, 1, 24-26.	3.6	18
87	Inequality of household consumption and air pollution-related deaths in China. Nature Communications, 2019, 10, 4337.	5.8	114
88	The Slowdown in Clobal Air-Pollutant Emission Growth and Driving Factors. One Earth, 2019, 1, 138-148.	3.6	91
89	Mapping Carbon and Water Networks in the North China Urban Agglomeration. One Earth, 2019, 1, 126-137.	3.6	58
90	Assessing the economic impacts of IT service shutdown during the York flood of 2015 in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180871.	1.0	14

#	Article	IF	CITATIONS
91	Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan. Applied Energy, 2019, 247, 350-362.	5.1	52
92	Detection of human influences on temperature seasonality from the nineteenth century. Nature Sustainability, 2019, 2, 484-490.	11.5	27
93	Review on City-Level Carbon Accounting. Environmental Science & amp; Technology, 2019, 53, 5545-5558.	4.6	75
94	Does the rebound effect matter in energy import-dependent mega-cities? Evidence from Shanghai (China). Applied Energy, 2019, 241, 212-228.	5.1	62
95	Regional development and carbon emissions in China. Energy Economics, 2019, 81, 25-36.	5.6	284
96	Structural patterns of city-level CO2 emissions in Northwest China. Journal of Cleaner Production, 2019, 223, 553-563.	4.6	24
97	Frequent interactions of Tibet's CO ₂ emissions with those of other regions in China. Earth's Future, 2019, 7, 491-502.	2.4	12
98	Initial Declines in China's Provincial Energy Consumption and Their Drivers. Joule, 2019, 3, 1163-1168.	11.7	26
99	Peak cementâ€related CO ₂ emissions and the changes in drivers in China. Journal of Industrial Ecology, 2019, 23, 959-971.	2.8	64
100	Linking cityâ€level input–output table to urban energy footprint: Construction framework and application. Journal of Industrial Ecology, 2019, 23, 781-795.	2.8	46
101	A psychophysical measurement on subjective well-being and air pollution. Nature Communications, 2019, 10, 5473.	5.8	50
102	Socioeconomic and atmospheric factors affecting aerosol radiative forcing: Production-based versus consumption-based perspective. Atmospheric Environment, 2019, 200, 197-207.	1.9	12
103	Characterising climate change discourse on social media during extreme weather events. Global Environmental Change, 2019, 54, 50-60.	3.6	55
104	Carbon emissions of cities from a consumption-based perspective. Applied Energy, 2019, 235, 509-518.	5.1	198
105	Life-cycle water uses for energy consumption of Chinese households from 2002 to 2015. Journal of Environmental Management, 2019, 231, 989-995.	3.8	17
106	City-level water-energy nexus in Beijing-Tianjin-Hebei region. Applied Energy, 2019, 235, 827-834.	5.1	75
107	Cities: The core of climate change mitigation. Journal of Cleaner Production, 2019, 207, 582-589.	4.6	193
108	Loss of work productivity in a warming world: Differences between developed and developing countries. Journal of Cleaner Production, 2019, 208, 1219-1225.	4.6	22

#	Article	IF	CITATIONS
109	An emissions-socioeconomic inventory of Chinese cities. Scientific Data, 2019, 6, 190027.	2.4	107
110	Carbon emission imbalances and the structural paths of Chinese regions. Applied Energy, 2018, 215, 396-404.	5.1	118
111	Reconciling discrepancies in the source characterization of VOCs between emission inventories and receptor modeling. Science of the Total Environment, 2018, 628-629, 697-706.	3.9	14
112	How modifications of China's energy data affect carbon mitigation targets. Energy Policy, 2018, 116, 337-343.	4.2	48
113	Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China's iron and steel industry. Journal of Cleaner Production, 2018, 185, 331-341.	4.6	51
114	Measuring scarce water saving from interregional virtual water flows in China. Environmental Research Letters, 2018, 13, 054012.	2.2	76
115	Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives. Environmental Science & Technology, 2018, 52, 6380-6389.	4.6	34
116	China's "Exported Carbon―Peak: Patterns, Drivers, and Implications. Geophysical Research Letters, 2018, 45, 4309-4318.	1.5	124
117	The spatiotemporal features of greenhouse gases emissions from biomass burning in China from 2000 to 2012. Journal of Cleaner Production, 2018, 181, 801-808.	4.6	36
118	China CO2 emission accounts 1997–2015. Scientific Data, 2018, 5, 170201.	2.4	824
119	Local strategies for China's carbon mitigation: An investigation of Chinese city-level CO2 emissions. Journal of Cleaner Production, 2018, 178, 890-902.	4.6	83
120	Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 2018, 1, 59-68.	11.5	215
121	A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. Journal of Cleaner Production, 2018, 184, 959-968.	4.6	91
122	Patterns of CO2 emissions in 18 central Chinese cities from 2000 to 2014. Journal of Cleaner Production, 2018, 172, 529-540.	4.6	64
123	Assessment of the economic impacts of heat waves: A case study of Nanjing, China. Journal of Cleaner Production, 2018, 171, 811-819.	4.6	107
124	The comprehensive environmental efficiency of socioeconomic sectors in China: An analysis based on a non-separable bad output SBM. Journal of Cleaner Production, 2018, 176, 1091-1110.	4.6	49
125	A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012. Scientific Data, 2018, 5, 180155.	2.4	105
126	Emissions are still rising: ramp up the cuts. Nature, 2018, 564, 27-30.	13.7	136

#	Article	IF	CITATIONS
127	Temporal change in India's imbalance of carbon emissions embodied in international trade. Applied Energy, 2018, 231, 914-925.	5.1	43
128	Assessment of the pollution–health–economics nexus in China. Atmospheric Chemistry and Physics, 2018, 18, 14433-14443.	1.9	22
129	The role of intermediate trade in the change of carbon flows within China. Energy Economics, 2018, 76, 303-312.	5.6	41
130	Decreases in global beer supply due to extreme drought and heat. Nature Plants, 2018, 4, 964-973.	4.7	153
131	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 2018, 9, 3581.	5.8	87
132	Estimating perfluorocarbon emission factors for industrial rare earth metal electrolysis. Resources, Conservation and Recycling, 2018, 136, 315-323.	5.3	12
133	Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Applied Energy, 2018, 225, 183-194.	5.1	40
134	The rise of South–South trade and its effect on global CO2 emissions. Nature Communications, 2018, 9, 1871.	5.8	328
135	Structural decline in China's CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 2018, 11, 551-555.	5.4	340
136	Estimating household air pollution exposures and health impacts from space heating in rural China. Environment International, 2018, 119, 117-124.	4.8	107
137	City-level climate change mitigation in China. Science Advances, 2018, 4, eaaq0390.	4.7	287
138	Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution. Ecological Economics, 2018, 153, 1-16.	2.9	15
139	Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Applied Energy, 2018, 228, 1683-1692.	5.1	124
140	Distinguishing Emission-Associated Ambient Air PM _{2.5} Concentrations and Meteorological Factor-Induced Fluctuations. Environmental Science & Technology, 2018, 52, 10416-10425.	4.6	48
141	Categorising virtual water transfers through China's electric power sector. Applied Energy, 2018, 226, 252-260.	5.1	58
142	Rapid growth of petroleum coke consumption and its related emissions in China. Applied Energy, 2018, 226, 494-502.	5.1	60
143	The global CO2 emission cost of geographic shifts in international sourcing. Energy Economics, 2018, 73, 122-134.	5.6	25
144	China's Energy Consumption in the New Normal. Earth's Future, 2018, 6, 1007-1016.	2.4	101

#	Article	IF	CITATIONS
145	Multiple disasters management: Lessons from the Fukushima triple events. Economic Analysis and Policy, 2017, 53, 114-122.	3.2	21
146	The consumption-based black carbon emissions of China's megacities. Journal of Cleaner Production, 2017, 161, 1275-1282.	4.6	80
147	Multi-scale input-output analysis of consumption-based water resources: Method and application. Journal of Cleaner Production, 2017, 164, 338-346.	4.6	57
148	Methodology and applications of city level CO2 emission accounts in China. Journal of Cleaner Production, 2017, 161, 1215-1225.	4.6	351
149	Pattern changes in determinants of Chinese emissions. Environmental Research Letters, 2017, 12, 074003.	2.2	217
150	Transboundary health impacts of transported global air pollution and international trade. Nature, 2017, 543, 705-709.	13.7	737
151	Income-Based Greenhouse Gas Emissions of Nations. Environmental Science & Technology, 2017, 51, 346-355.	4.6	107
152	Unequal household carbon footprints in China. Nature Climate Change, 2017, 7, 75-80.	8.1	345
153	Flood footprint of the 2007 floods in the UK: The case of the Yorkshire and The Humber region. Journal of Cleaner Production, 2017, 168, 655-667.	4.6	57
154	Energy consumption and CO ₂ emissions in Tibet and its cities in 2014. Earth's Future, 2017, 5, 854-864.	2.4	48
155	An index of inequality in China. Nature Energy, 2017, 2, 774-775.	19.8	10
156	Demand-driven air pollutant emissions for a fast-developing region in China. Applied Energy, 2017, 204, 131-142.	5.1	52
157	The global CO2 emissions growth after international crisis and the role of international trade. Energy Policy, 2017, 109, 734-746.	4.2	80
158	Risk assessment of oil price from static and dynamic modelling approaches. Applied Economics, 2017, 49, 929-939.	1.2	25
159	Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030. Journal of Cleaner Production, 2017, 142, 2227-2236.	4.6	346
160	Chinese CO2 emission flows have reversed since the global financial crisis. Nature Communications, 2017, 8, 1712.	5.8	678
161	Industrial Relocation and CO 2 Emission Intensity: Focus on the Potential Cross-Country Shift from China to India and SE Asia. Energy Procedia, 2017, 142, 2898-2904.	1.8	11
162	Variations of China's emission estimates: response to uncertainties in energy statistics. Atmospheric Chemistry and Physics, 2017, 17, 1227-1239.	1.9	65

#	Article	IF	CITATIONS
163	Take responsibility for electronic-waste disposal. Nature, 2016, 536, 23-25.	13.7	155
164	Revisiting the Global Net Carbon Dioxide Emission Transfers by International Trade: The Impact of Trade Heterogeneity of China. Journal of Industrial Ecology, 2016, 20, 506-514.	2.8	35
165	Performance Assessment and Outlook of China's Emission-Trading Scheme. Engineering, 2016, 2, 398-401.	3.2	21
166	SESAME: Exploring small businesses' behaviour to enhance resilience to flooding. E3S Web of Conferences, 2016, 7, 08011.	0.2	2
167	Globalization and pollution: tele-connecting local primary PM _{2.5} emissions to global consumption. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160380.	1.0	77
168	Environment-economy tradeoff for Beijing–Tianjin–Hebei's exports. Applied Energy, 2016, 184, 926-935.	5.1	58
169	Accounting for value added embodied in trade and consumption: an intercomparison of global multiregional input–output databases. Economic Systems Research, 2016, 28, 78-94.	1.2	42
170	New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Applied Energy, 2016, 184, 742-750.	5.1	394
171	Global climate forcing of aerosols embodied in international trade. Nature Geoscience, 2016, 9, 790-794.	5.4	79
172	Determinants of global CO2 emissions growth. Applied Energy, 2016, 184, 1132-1141.	5.1	102
173	Virtual Water Flows in the EU27: A Consumptionâ€based Approach. Journal of Industrial Ecology, 2016, 20, 547-558.	2.8	68
174	Climate change mitigation in Chinese megacities: A measures-based analysis of opportunities in the residential sector. Applied Energy, 2016, 184, 769-778.	5.1	14
175	Substantial global carbon uptake by cement carbonation. Nature Geoscience, 2016, 9, 880-883.	5.4	355
176	Carbon emissions embodied in international trade: The post-China era. Applied Energy, 2016, 184, 1063-1072.	5.1	110
177	Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Applied Energy, 2016, 184, 995-1003.	5.1	139
178	Carbon emissions from fossil fuel consumption of Beijing in 2012. Environmental Research Letters, 2016, 11, 114028.	2.2	68
179	Socioeconomic Drivers of Greenhouse Gas Emissions in the United States. Environmental Science & amp; Technology, 2016, 50, 7535-7545.	4.6	96
180	Consumption-based emission accounting for Chinese cities. Applied Energy, 2016, 184, 1073-1081.	5.1	519

#	Article	IF	CITATIONS
181	Assessment of socioeconomic costs to China's air pollution. Atmospheric Environment, 2016, 139, 147-156.	1.9	92
182	Driving forces of Chinese primary air pollution emissions: an index decomposition analysis. Journal of Cleaner Production, 2016, 133, 136-144.	4.6	168
183	CO2 emissions from China's lime industry. Applied Energy, 2016, 166, 245-252.	5.1	115
184	Interprovincial Reliance for Improving Air Quality in China: A Case Study on Black Carbon Aerosol. Environmental Science & Technology, 2016, 50, 4118-4126.	4.6	59
185	Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO 2 emission changes: A case study for Shanghai (China). Renewable and Sustainable Energy Reviews, 2016, 55, 516-536.	8.2	212
186	Targeted opportunities to address the climate–trade dilemma in China. Nature Climate Change, 2016, 6, 201-206.	8.1	206
187	China's toxic informal e-waste recycling: local approaches to a global environmental problem. Journal of Cleaner Production, 2016, 114, 71-80.	4.6	116
188	Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory. Atmospheric Chemistry and Physics, 2015, 15, 5443-5456.	1.9	137
189	Corrigendum to "Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory" published in Atmos. Chem. Phys., 15, 5443–5456, 2015. Atmospheric Chemistry and Physics, 2015, 15, 6815-6815.	1.9	11
190	Climate policy: Steps to China's carbon peak. Nature, 2015, 522, 279-281.	13.7	255
191	To what extent can China's near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region. Environmental Research Letters, 2015, 10, 104006.	2.2	67
192	Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the United States of America, 2015, 112, 1031-1035.	3.3	392
193	Four system boundaries for carbon accounts. Ecological Modelling, 2015, 318, 118-125.	1.2	62
194	China's rising hydropower demand challenges water sector. Scientific Reports, 2015, 5, 11446.	1.6	72
195	Revealing the Hidden Health Costs Embodied in Chinese Exports. Environmental Science & Technology, 2015, 49, 4381-4388.	4.6	88
196	Firm ownership, China's export related emissions, and the responsibility issue. Energy Economics, 2015, 51, 466-474.	5.6	39
197	Make raw emissions data public in China. Nature, 2015, 526, 640-640.	13.7	6
198	Estimating inter-regional trade flows in China: A sector-specific statistical model. Journal of Chinese Geography, 2015, 25, 1247-1263.	1.5	15

#	Article	IF	CITATIONS
199	Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 2015, 524, 335-338.	13.7	1,185
200	How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?. Applied Energy, 2015, 156, 230-240.	5.1	93
201	Reply to Lopez et al.: Consumption-based accounting helps mitigate global air pollution. Proceedings of the United States of America, 2014, 111, E2631.	3.3	27
202	Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches. Environmental Science & Technology, 2014, 48, 14139-14147.	4.6	114
203	A Hybridâ€Unit Energy Inputâ€Output Model to Evaluate Embodied Energy and Life Cycle Emissions for China's Economy. Journal of Industrial Ecology, 2014, 18, 201-211.	2.8	43
204	The socioeconomic drivers of China's primary PM _{2.5} emissions. Environmental Research Letters, 2014, 9, 024010.	2.2	350
205	China's international trade and air pollution in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1736-1741.	3.3	391
206	Determinants of stagnating carbon intensity in China. Nature Climate Change, 2014, 4, 1017-1023.	8.1	157
207	Lifting China's Water Spell. Environmental Science & Technology, 2014, 48, 11048-11056.	4.6	105
208	Water Footprint Symposium: where next for water footprint and water assessment methodology?. International Journal of Life Cycle Assessment, 2014, 19, 1561-1565.	2.2	13
209	A low-carbon road map for China. Nature, 2013, 500, 143-145.	13.7	357
210	Inter-provincial clean development mechanism in China: A case study of the solar PV sector. Energy Policy, 2013, 57, 454-461.	4.2	12
211	DISAGGREGATING THE ELECTRICITY SECTOR OF CHINA'S INPUT–OUTPUT TABLE FOR IMPROVED ENVIRONMENTAL LIFE-CYCLE ASSESSMENT. Economic Systems Research, 2013, 25, 300-320.	1.2	66
212	INPUT–OUTPUT ANALYSIS: THE NEXT 25 YEARS. Economic Systems Research, 2013, 25, 369-389.	1.2	84
213	Tie carbon emissions to consumers. Nature, 2013, 493, 304-305.	13.7	4
214	CO2 emissions from China's power sector at the provincial level: Consumption versus production perspectives. Renewable and Sustainable Energy Reviews, 2013, 19, 164-172.	8.2	118
215	China's inter-regional spillover of carbon emissions and domestic supply chains. Energy Policy, 2013, 61, 1305-1321.	4.2	152
216	Outsourcing CO ₂ within China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11654-11659.	3.3	533

#	Article	IF	CITATIONS
217	Modeling Imbalanced Economic Recovery Following a Natural Disaster Using Inputâ€Output Analysis. Risk Analysis, 2013, 33, 1908-1923.	1.5	66
218	A framework for organisational operational response and strategic decision making for long term flood preparedness in urban areas. , 2013, , .		9
219	CHINA'S WATER MANAGEMENT - CHALLENGES AND SOLUTIONS. Environmental Engineering and Management Journal, 2013, 12, 1311-1321.	0.2	8
220	Vulnerability of London's Economy to Climate Change: Sensitivity to Production Loss. Journal of Environmental Protection, 2013, 04, 548-563.	0.3	9
221	DISAGCREGATING INPUT–OUTPUT MODELS WITH INCOMPLETE INFORMATION. Economic Systems Research, 2012, 24, 329-347.	1.2	54
222	Scaling up water research. Nature Climate Change, 2012, 2, 132-132.	8.1	0
223	Comparative Analysis of Carbonization Drivers in China's Megacities. Journal of Industrial Ecology, 2012, 16, 564-575.	2.8	31
224	Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: A consumption based approach. Applied Geography, 2012, 32, 691-701.	1.7	256
225	Uncovering China's greenhouse gas emission from regional and sectoral perspectives. Energy, 2012, 45, 1059-1068.	4.5	196
226	Embodied energy use in China's industrial sectors. Energy Policy, 2012, 49, 751-758.	4.2	173
227	The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 2012, 2, 672-675.	8.1	477
228	Low-carbon development in the least developed region: a case study of Guangyuan, Sichuan province, southwest China. Natural Hazards, 2012, 62, 243-254.	1.6	26
229	Analyzing Drivers of Regional Carbon Dioxide Emissions for China. Journal of Industrial Ecology, 2012, 16, 600-611.	2.8	205
230	A "Carbonizing Dragonâ€; China's Fast Growing CO ₂ Emissions Revisited. Environmental Science & Technology, 2011, 45, 9144-9153.	4.6	295
231	Mapping Flows of Embodied Emissions in the Global Production System. Environmental Science & Technology, 2011, 45, 10516-10523.	4.6	155
232	Spatially Explicit Analysis of Water Footprints in the UK. Water (Switzerland), 2011, 3, 47-63.	1.2	64
233	"ls the concept of a green economy a useful way of framing policy discussions and policymaking to promote sustainable development?― Natural Resources Forum, 2011, 35, 63-72.	1.8	7
234	Preliminary exploration on low-carbon technology roadmap of China's power sector. Energy, 2011, 36, 1500-1512.	4.5	87

#	Article	lF	CITATIONS
235	The net effect of green lifestyles. Nature Climate Change, 2011, 1, 250-251.	8.1	7
236	Assessing regional and global water footprints for the UK. Ecological Economics, 2010, 69, 1140-1147.	2.9	190
237	Effects of China's Economic Growth. Science, 2010, 328, 824-825.	6.0	22
238	A CARBON FOOTPRINT TIME SERIES OF THE UK – RESULTS FROM A MULTI-REGION INPUT–OUTPUT MODEL. Economic Systems Research, 2010, 22, 19-42.	1.2	253
239	Distributional Effects of Climate Change Taxation: The Case of the UK. Environmental Science & Technology, 2010, 44, 3670-3676.	4.6	89
240	China can offer domestic emission cap-and-trade in post 2012. Environmental Science & Technology, 2010, 44, 5327-5327.	4.6	17
241	Lifestyles, technology and CO2 emissions in China: A regional comparative analysis. Ecological Economics, 2009, 69, 145-154.	2.9	189
242	Emissions affected by trade among developing countries. Nature, 2009, 462, 159-159.	13.7	29
243	Environmental implications of urbanization and lifestyle change in China: Ecological and Water Footprints. Journal of Cleaner Production, 2009, 17, 1241-1248.	4.6	299
244	INPUT–OUTPUT ANALYSIS AND CARBON FOOTPRINTING: AN OVERVIEW OF APPLICATIONS. Economic Systems Research, 2009, 21, 187-216.	1.2	436
245	Journey to world top emitter: An analysis of the driving forces of China's recent CO ₂ emissions surge. Geophysical Research Letters, 2009, 36, .	1.5	317
246	A new and integrated hydro-economic accounting and analytical framework for water resources: A case study for North China. Journal of Environmental Management, 2008, 88, 1300-1313.	3.8	111
247	The contribution of Chinese exports to climate change. Energy Policy, 2008, 36, 3572-3577.	4.2	505
248	The drivers of Chinese CO2 emissions from 1980 to 2030. Global Environmental Change, 2008, 18, 626-634.	3.6	523
249	Quantifying socioeconomic characteristics of drought-sensitive regions: Evidence from Chinese provincial agricultural data. Comptes Rendus - Geoscience, 2008, 340, 679-688.	0.4	25
250	Changing lifestyles and consumption patterns in developing countries: A scenario analysis for China and India. Futures, 2007, 39, 1084-1096.	1.4	173
251	China's Growing CO ₂ EmissionsA Race between Increasing Consumption and Efficiency Gains. Environmental Science & Technology, 2007, 41, 5939-5944.	4.6	489
252	Assessment of regional trade and virtual water flows in China. Ecological Economics, 2007, 61, 159-170.	2.9	320