Ehsan Seyedjafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells by diopside coated Poly-L-lactic Acid-Based nanofibrous scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 707-716.	3.4	4
2	Coating of <scp>3D</scp> â€printed <scp>poly (εâ€caprolactone)</scp> scaffolds with silk protein sericin enhances the osteogenic differentiation of human mesenchymal stem cells. Polymers for Advanced Technologies, 2022, 33, 1211-1221.	3.2	4
3	Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration. International Journal of Biological Macromolecules, 2022, 206, 861-874.	7.5	9
4	Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions. Iranian Biomedical Journal, 2022, 26, 124-31.	0.7	5
5	Effects of Nanofiber Scaffolds Coated with Nanoparticulate and Microparticulate Freeze Dried Bone Allograft on the Morphology, Adhesion, and Proliferation of Human Mesenchymal Stem Cells. Iranian Biomedical Journal, 2022, 26, 193-201.	0.7	0
6	Microfluidic fabrication of berberine-loaded nanoparticles for cancer treatment applications. Journal of Drug Delivery Science and Technology, 2021, 61, 102134.	3.0	11
7	Electrospun poly(<scp>l</scp> â€lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells. Polymers for Advanced Technologies, 2021, 32, 402-410.	3.2	11
8	Fabrication and characterization of <i>alginate/chitosan</i> hydrogel combined with <i>honey</i> and <scp><i>aloe vera</i></scp> for wound dressing applications. Journal of Applied Polymer Science, 2021, 138, 51398.	2.6	26
9	Comparative Evaluation of the Effects of Antimicrobial Photodynamic Therapy With an LED and a Laser on the Proliferation of Human Gingival Fibroblasts on the Root Surface: An In Vitro Study. Journal of Lasers in Medical Sciences, 2021, 12, e47-e47.	1.2	4
10	miR-424 induces apoptosis in glioblastoma cells and targets AKT1 and RAF1 oncogenes from the ERBB signaling pathway. European Journal of Pharmacology, 2021, 906, 174273.	3.5	10
11	Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. International Journal of Molecular Sciences, 2021, 22, 10332.	4.1	3
12	In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells. Cell and Tissue Banking, 2021, 22, 467-477.	1.1	8
13	3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS Omega, 2021, 6, 35284-35296.	3.5	27
14	Incorporating PCL nanofibers with oyster shell to improve osteogenic differentiation of mesenchymal stem cells. Polymer Bulletin, 2020, 77, 701-715.	3.3	13
15	Pharmaceutical implants: classification, limitations and therapeutic applications. Pharmaceutical Development and Technology, 2020, 25, 116-132.	2.4	23
16	MicroRNA-218 competes with differentiation media in the induction of osteogenic differentiation of mesenchymal stem cell by regulating β-catenin inhibitors. Molecular Biology Reports, 2020, 47, 8451-8463.	2.3	7
17	Optimized dose of synthetic analogues of Monophosphoryl lipid A as an effective alternative for for formulating recombinant human papillomavirus vaccine. Biologicals, 2020, 68, 60-64.	1.4	2
18	<p>Nanofibrous Scaffolds Containing Hydroxyapatite and Microfluidic-Prepared Polyamidoamin/BMP-2 Plasmid Dendriplexes for Bone Tissue Engineering Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 2633-2646.	6.7	18

#	Article	IF	CITATIONS
19	Improved efficacy of bioâ€mineralization of human mesenchymal stem cells on modified PLLA nanofibers coated with bioactive materials via enhanced expression of integrin α2β1. Polymers for Advanced Technologies, 2020, 31, 2325.	3.2	2
20	Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sciences, 2020, 254, 117768.	4.3	34
21	Co-delivery of gemcitabine prodrug along with anti NF-κB siRNA by tri-layer micelles can increase cytotoxicity, uptake and accumulation of the system in the cancers. Materials Science and Engineering C, 2020, 116, 111161.	7.3	23
22	Effects of substrate mechanics on angiogenic capacity and nitric oxide release in human endothelial cells. Annals of the New York Academy of Sciences, 2020, 1470, 31-43.	3.8	7
23	Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Reviews and Reports, 2020, 16, 427-433.	3.8	261
24	Dexamethasone loaded multi-layer poly- <scp>l</scp> -lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharmaceutical Development and Technology, 2019, 24, 338-347.	2.4	28
25	Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 4020-4029.	2.8	39
26	Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. Journal of Biomedical Materials Research - Part A, 2019, 107, 2806-2813.	4.0	31
27	Surfactantâ€essistedâ€waterâ€exposed versus surfactantâ€equeousâ€solutionâ€exposed electrospinning of novel super hydrophilic Polycaprolactoneâ€based fibers: Cell culture studies. Journal of Biomedical Materials Research - Part A, 2019, 107, 1204-1212.	4.0	2
28	Baghdadite nanoparticleâ€coated poly <scp>l</scp> â€lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissueâ€derived mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 1284-1293.	4.0	30
29	Enhanced osteogenic differentiation of mesenchymal stem cells on metal–organic framework based on copper, zinc, and imidazole coated polyâ€ <scp>l</scp> ″actic acid nanofiber scaffolds. Journal of Biomedical Materials Research - Part A, 2019, 107, 1841-1848.	4.0	50
30	Surfactantâ€assistedâ€waterâ€exposed versus surfactantâ€aqueousâ€solutionâ€exposed electrospinning of novel super hydrophilic polycaprolactone based fibers: Analysis of drug release behavior. Journal of Biomedical Materials Research - Part A, 2019, 107, 597-609.	4.0	9
31	Surface mineralized hybrid nanofibrous scaffolds based on poly(<scp>l</scp> â€lactide) and alginate enhances osteogenic differentiation of stem cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 586-596.	4.0	17
32	Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 71-80.	4.0	23
33	Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. Research in Veterinary Science, 2019, 124, 444-451.	1.9	17
34	Physicochemical Characterization of Altebrelâ,,¢, a Proposed Etanercept Biosimilar. Iranian Journal of Biotechnology, 2019, 17, e2470.	0.3	0
35	Osteoconduction of Unrestricted Somatic Stem Cells on an Electrospun Polylactic-Co-Glycolic Acid Scaffold Coated with Nanohydroxyapatite. Cells Tissues Organs, 2018, 205, 9-19.	2.3	9
36	Fabrication of a co-culture micro-bioreactor device for efficient hepatic differentiation of human induced pluripotent stem cells (hiPSCs). Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 161-170.	2.8	14

#	Article	IF	CITATIONS
37	Modification of electrospun poly(<scp>L</scp> -lactic acid)/polyethylenimine nanofibrous scaffolds for biomedical application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 247-257.	3.4	19
38	Hardystoniteâ€Coated Poly(<scp>l</scp> â€lactide) Nanofibrous Scaffold and Efficient Osteogenic Differentiation of Adiposeâ€Derived Mesenchymal Stem Cells. Artificial Organs, 2018, 42, E335-E348.	1.9	11
39	An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1274-1281.	2.8	45
40	Development and characterization of electrosprayed nanoparticles for encapsulation of <scp>C</scp> urcumin. Journal of Biomedical Materials Research - Part A, 2018, 106, 285-292.	4.0	28
41	Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, S1032-S1042.	2.8	11
42	Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Materials Science and Engineering C, 2018, 93, 686-703.	7.3	42
43	Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells. Biologicals, 2018, 54, 33-38.	1.4	10
44	Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomedicine and Pharmacotherapy, 2017, 88, 635-643.	5.6	47
45	Fabrication of a three dimensional spongy scaffold using human Wharton's jelly derived extra cellular matrix for wound healing. Materials Science and Engineering C, 2017, 78, 627-638.	7.3	58
46	Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydrate Polymers, 2017, 171, 281-291.	10.2	44
47	Enhanced Skin Regeneration by Herbal Extractâ€Coated Polyâ€Lâ€Lactic Acid Nanofibrous Scaffold. Artificial Organs, 2017, 41, E296-E307.	1.9	41
48	G CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2017, 105, 2830-2842.	4.0	38
49	Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals, 2017, 46, 23-28.	1.4	40
50	Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 371-380.	1.5	3
51	EFFECTS OF SUBSTRATE DEFORMABILITY ON CELL BEHAVIORS: ELASTIC MODULUS VERSUS THICKNESS. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750088.	0.7	1
52	Bioactive glass ceramic nanoparticles-coated poly(l -lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine. Tissue and Cell, 2017, 49, 565-572.	2.2	29
53	Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering. ASAIO Journal, 2017, 63, 512-517.	1.6	13
54	Electrospun Poly-L-Lactic Acid Coated with Silicate Bioceramic Nanoparticles Enhance Osteogenic Differentiation of Adipose Tissue Derived Mesenchymal Stem Cells. Journal of Biomaterials and Tissue Engineering, 2017, 7, 91-100.	0.1	6

#	Article	IF	CITATIONS
55	Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness. BioImpacts, 2017, 7, 41-47.	1.5	11
56	Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton's Jelly. EXCLI Journal, 2017, 16, 785-794.	0.7	18
57	H2O2-induced mild stress in relation with in vitro ovine oocyte developmental competence: implications for blastocyst apoptosis and related genes expression. Cellular and Molecular Biology, 2017, 63, 43.	0.9	1
58	Effect of Eight Weeks of Water Exercises on Deep Part of the Pool on the Static Balance of the Elderly Man. Salmand: Iranian Journal of Ageing, 2017, 12, 384-393.	0.5	0
59	Prevention of adhesion bands by ibuprofenâ€loaded PLGA nanofibers. Biotechnology Progress, 2016, 32, 990-997.	2.6	19
60	The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. International Journal of Pharmaceutics, 2016, 507, 1-11.	5.2	56
61	Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biologicals, 2016, 44, 511-516.	1.4	23
62	Kinetics of infected insect cell osmolysis and enhanced protein release using a modified disruption method. Bioprocess and Biosystems Engineering, 2016, 39, 1729-1735.	3.4	4
63	Extremely Low Frequency Electromagnetic Field in Mesenchymal Stem Cells Gene Regulation: Chondrogenic Markers Evaluation. Artificial Organs, 2016, 40, 929-937.	1.9	16
64	A Three-Dimensional Scaffold-Based System for Modeling the Bone Marrow Tissue. Stem Cells and Development, 2016, 25, 492-498.	2.1	6
65	Fat harvesting site is an important determinant of proliferation and pluripotency of adipose-derived stem cells. Biologicals, 2016, 44, 12-18.	1.4	20
66	Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Materials Science and Engineering C, 2016, 62, 398-406.	7.3	21
67	In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil. Cell Journal, 2016, 18, 310-21.	0.2	16
68	Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in <i>inÂvitro</i> and <i>inÂvivo</i> models. Cell Proliferation, 2015, 48, 455-464.	5.3	47
69	Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia. Journal of Materials Engineering and Performance, 2015, 24, 1220-1225.	2.5	20
70	Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1809-1819.	3.3	49
71	Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramicâ€coated electrospun poly (L″actide) nanofibres. Cell Proliferation, 2015, 48, 47-58.	5.3	55
72	7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction. Tumor Biology, 2015, 36, 2809-2814.	1.8	20

#	Article	IF	CITATIONS
73	Improved immobilization of gelatin on a modified polyurethane urea. Journal of Bioactive and Compatible Polymers, 2015, 30, 57-73.	2.1	8
74	PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydrate Polymers, 2015, 118, 133-142.	10.2	158
75	Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering. EXCLI Journal, 2015, 14, 851-60.	0.7	30
76	Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation. ACS Applied Materials & Interfaces, 2014, 6, 72-82.	8.0	30
77	Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering. Molecular Biology Reports, 2014, 41, 741-749.	2.3	34
78	Coating of electrospun poly(lactic oâ€glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biology International, 2014, 38, 1271-1279.	3.0	36
79	Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds. Materials Science and Engineering C, 2014, 40, 445-454.	7.3	37
80	RNA-binding protein Rbm47 binds to Nanog in mouse embryonic stem cells. Molecular Biology Reports, 2013, 40, 4391-4396.	2.3	12
81	Isolation, characterization, and mesodermic differentiation of stem cells from adipose tissue of camel (Camelus dromedarius). In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 147-154.	1.5	20
82	Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell and Tissue Research, 2013, 354, 849-860.	2.9	71
83	Novel approach to reduce postsurgical adhesions to a minimum: Administration of losartan plus atorvastatin intraperitoneally. Journal of Surgical Research, 2013, 181, 91-98.	1.6	16
84	Micropatterning of ECM Proteins on Glass Substrates to Regulate Cell Attachment and Proliferation. Avicenna Journal of Medical Biotechnology, 2013, 5, 234-40.	0.3	9
85	Function of Poly (lactic-co-glycolic acid) Nanofiber in Reduction of Adhesion Bands. Journal of Surgical Research, 2012, 172, e1-e9.	1.6	46
86	Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochemical and Biophysical Research Communications, 2012, 423, 50-54.	2.1	54
87	New Approach to Bone Tissue Engineering: Simultaneous Application of Hydroxyapatite and Bioactive Glass Coated on a Poly(<scp>l</scp> -lactic acid) Scaffold. ACS Applied Materials & Interfaces, 2011, 3, 4518-4524.	8.0	106
88	Enhanced Infiltration and Biomineralization of Stem Cells on Collagen-Grafted Three-Dimensional Nanofibers. Tissue Engineering - Part A, 2011, 17, 1209-1218.	3.1	49
89	Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Proliferation, 2011, 44, 67-74.	5.3	36
90	Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. Journal of Materials Science: Materials in Medicine, 2011, 22, 165-174.	3.6	54

#	Article	IF	CITATIONS
91	A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnology Letters, 2011, 33, 1257-1264.	2.2	137
92	Electrospun nanofiberâ€based regeneration of cartilage enhanced by mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2011, 99A, 467-478.	4.0	122
93	CYTOTOXICITY EVALUATION OF 63S BIOACTIVE GLASS AND BONE-DERIVED HYDROXYAPATITE PARTICLES USING HUMAN BONE-MARROW STEM CELLS. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2011, 155, 323-326.	0.6	12
94	Accelerated Epidermal Regeneration and Improved Dermal Reconstruction Achieved by Polyethersulfone Nanofibers. Tissue Engineering - Part A, 2010, 16, 3527-3536.	3.1	72
95	Surface expression of CXCR4 in unrestricted somatic stem cells and its regulation by growth factors. Cell Biology International, 2010, 34, 687-692.	3.0	16
96	Nanohydroxyapatite-Coated Electrospun Poly(<scp>l</scp> -lactide) Nanofibers Enhance Osteogenic Differentiation of Stem Cells and Induce Ectopic Bone Formation. Biomacromolecules, 2010, 11, 3118-3125.	5.4	162
97	Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation. Materials Science and Engineering C, 2009, 29, 1491-1497.	7.3	22
98	Improved infiltration of stem cells on electrospun nanofibers. Biochemical and Biophysical Research Communications, 2009, 382, 129-133.	2.1	88