
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987360/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E10-E23.	1.8	1
2	Papers published by the journal <i>Temperature</i> are cited more often than those published by more prestigious journals. Temperature, 2022, 9, 1-7.	1.7	2
3	POLAR Study Revisited: Therapeutic Hypothermia in Severe Brain Trauma Should Not Be Abandoned. Journal of Neurotrauma, 2021, 38, 2772-2776.	1.7	3
4	Terrestrial warming and cooling: Either or both?. Temperature, 2020, 7, 215-216.	1.7	1
5	Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. , 2020, 208, 107474.		83
6	Energy Trade-offs in Host Defense: Immunology Meets Physiology. Trends in Endocrinology and Metabolism, 2019, 30, 875-878.	3.1	18
7	Systemic antibiotic prophylaxis does not affect infectious complications in pediatric burn injury: A meta-analysis. PLoS ONE, 2019, 14, e0223063.	1.1	22
8	TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe. Pharmaceuticals, 2019, 12, 19.	1.7	3
9	Camphor, Applied Epidermally to the Back, Causes Snout- and Chest-Grooming in Rats: A Response Mediated by Cutaneous TRP Channels. Pharmaceuticals, 2019, 12, 24.	1.7	3
10	Therapeutic Whole-Body Hypothermia Reduces Death in Severe Traumatic Brain Injury if the Cooling Index Is Sufficiently High: Meta-Analyses of the Effect of Single Cooling Parameters and Their Integrated Measure. Journal of Neurotrauma, 2018, 35, 2407-2417.	1.7	33
11	<scp>TRPV</scp> 1 antagonists that cause hypothermia, instead of hyperthermia, in rodents: Compounds' pharmacological profiles, inÂvivo targets, thermoeffectors recruited and implications for drug development. Acta Physiologica, 2018, 223, e13038.	1.8	65
12	Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature by up to 1.3 ^o C: Implications for brain, brown adipose tissue, and muscle physiology. Temperature, 2018, 5, 22-35.	1.7	10
13	The opioid crisis and … reconsidering the use of drugs that affect body temperature. Temperature, 2018, 5, 1-3.	1.7	2
14	In Reply. Anesthesiology, 2018, 129, 378-379.	1.3	0
15	The thermoregulation system and how it works. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 156, 3-43.	1.0	91
16	Fever and hypothermia in systemic inflammation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 565-597.	1.0	85
17	Transient Receptor Potential Vanilloid 1 Antagonists Prevent Anesthesia-induced Hypothermia and Decrease Postincisional Opioid Dose Requirements in Rodents. Anesthesiology, 2017, 127, 813-823.	1.3	20
18	Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats. Journal of Neuroscience, 2017, 37, 6956-6971.	1.7	33

#	Article	IF	CITATIONS
19	Body Temperature Measurements for Metabolic Phenotyping in Mice. Frontiers in Physiology, 2017, 8, 520.	1.3	92
20	Education and peace go together; plus the best 2015 papers of the journal <i>Temperature</i> . Temperature, 2016, 3, 499-501.	1.7	1
21	Pungency: A reason for the sluggish expansion of hot spicy foods from the tropics. Temperature, 2016, 3, 56-58.	1.7	2
22	Award-winning papers published in <i>Temperature</i> in 2014. Temperature, 2016, 3, 8-10.	1.7	1
23	A Valentine's Day bouquet for <i>Temperature</i> readers: pleasing with prizes, searching for the right words, and keeping things mysterious. Temperature, 2015, 2, 17-21.	1.7	6
24	Platelet-activating factor is a potent pyrogen and cryogen, but it does not mediate lipopolysaccharide fever or hypothermia. Temperature, 2015, 2, 535-542.	1.7	10
25	Protecting western redcedar from deer browsing— with a passing reference to TRP channels. Temperature, 2015, 2, 142-149.	1.7	16
26	The cock, the Academy, and the best scientific journal in the world. Temperature, 2015, 2, 435-438.	1.7	1
27	Future approaches to therapeutic hypothermia: a symposium report. Temperature, 2015, 2, 168-171.	1.7	5
28	Which is the correct answer to the Mpemba puzzle?. Temperature, 2015, 2, 63-64.	1.7	4
29	Hyperbilirubinemia exaggerates endotoxin-induced hypothermia. Cell Cycle, 2015, 14, 1260-1267.	1.3	3
30	Temperature in the spotlight of drug abuse research. Temperature, 2015, 2, 27-28.	1.7	0
31	New research journals are needed and can compete with titans. Temperature, 2014, 1, 1-5.	1.7	13
32	Szilárd Donhoffer: Mastermind of the study demonstrating how cold prevented death of protein deficiency. Temperature, 2014, 1, 99-100.	1.7	3
33	Standing on the shoulders of giants. Temperature, 2014, 1, 71-75.	1.7	6
34	Skin temperature: its role in thermoregulation. Acta Physiologica, 2014, 210, 498-507.	1.8	329
35	Transient Receptor Potential Channel Ankyrin-1 Is Not a Cold Sensor for Autonomic Thermoregulation in Rodents. Journal of Neuroscience, 2014, 34, 4445-4452.	1.7	61
36	Thermoregulatory correlates of nausea in rats and musk shrews. Oncotarget, 2014, 5, 1565-1575.	0.8	42

#	Article	IF	CITATIONS
	Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and) Tj ETQq1		<u> </u>
37	Neuroendocrinology, 2013, 34, 211-227.	2.5	235
38	An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain, 2013, 154, 1749-1757.	2.0	144
39	Lipopolysaccharide-Induced Neuronal Activation in the Paraventricular and Dorsomedial Hypothalamus Depends on Ambient Temperature. PLoS ONE, 2013, 8, e75733.	1.1	23
40	Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle, 2012, 11, 343-349.	1.3	39
41	Revised h index for biomedical research. Cell Cycle, 2012, 11, 4118-4121.	1.3	25
42	Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1372-R1383.	0.9	82
43	Pharmacological Blockade of the Cold Receptor TRPM8 Attenuates Autonomic and Behavioral Cold Defenses and Decreases Deep Body Temperature. Journal of Neuroscience, 2012, 32, 2086-2099.	1.7	206
44	Neural circuitry engaged by prostaglandins during the sickness syndrome. Nature Neuroscience, 2012, 15, 1088-1095.	7.1	212
45	The inflammatory reflex: the current model should be revised. Experimental Physiology, 2012, 97, 1178-1179.	0.9	7
46	Comments on Point:Counterpoint: Humans do/do not demonstrate selective brain cooling during hyperthermia. Journal of Applied Physiology, 2011, 110, 575-580.	1.2	9
47	The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors. Journal of Physiology, 2011, 589, 2415-2431.	1.3	52
48	Thermoregulatory Phenotype of the <i>Trpv1</i> Knockout Mouse: Thermoeffector Dysbalance with Hyperkinesis. Journal of Neuroscience, 2011, 31, 1721-1733.	1.7	122
49	Hyperactive when young, hypoactive and overweight when aged: Connecting the dots in the story about locomotor activity, body mass, and aging in Trpv1 knockout mice. Aging, 2011, 3, 450-454.	1.4	32
50	Smoking in Trauma Patients: The Effects on the Incidence of Sepsis, Respiratory Failure, Organ Failure, and Mortality. Journal of Trauma, 2010, 69, 308-312.	2.3	23
51	Contributions of Different Modes of TRPV1 Activation to TRPV1 Antagonist-Induced Hyperthermia. Journal of Neuroscience, 2010, 30, 1435-1440.	1.7	150
52	Prostaglandin riddles in energy metabolism: E is for excess, D is for depletion. Focus on "Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2â€. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1509-R1511.	0.9	5
53	Cyclooxygenase-1 or -2—which one mediates lipopolysaccharide-induced hypothermia?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R485-R494.	0.9	47
54	The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not. Pharmacological Reviews, 2009, 61, 228-261.	7.1	216

#	Article	IF	CITATIONS
55	Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain, 2008, 136, 202-210.	2.0	423
56	Nicotine administration and withdrawal affect survival in systemic inflammation models. Journal of Applied Physiology, 2008, 105, 1028-1034.	1.2	18
57	Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1294-R1303.	0.9	51
58	Nonthermal Activation of Transient Receptor Potential Vanilloid-1 Channels in Abdominal Viscera Tonically Inhibits Autonomic Cold-Defense Effectors. Journal of Neuroscience, 2007, 27, 7459-7468.	1.7	200
59	Leptin: At the crossroads of energy balance and systemic inflammation. Progress in Lipid Research, 2007, 46, 89-107.	5.3	91
60	Eicosanoids in non-febrile thermoregulation. Progress in Brain Research, 2007, 162, 15-25.	0.9	13
61	Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R37-R46.	0.9	554
62	Cellular and Molecular Bases of the Initiation of Fever. PLoS Biology, 2006, 4, e284.	2.6	160
63	Neural Substrate of Cold-Seeking Behavior in Endotoxin Shock. PLoS ONE, 2006, 1, e1.	1.1	142
64	Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood, 2006, 107, 4000-4002.	0.6	86
65	Cold-seeking behavior as a thermoregulatory strategy in systemic inflammation. European Journal of Neuroscience, 2006, 23, 3359-3367.	1.2	120
66	Microsomal Prostaglandin E Synthase-1, Ephrins, and Ephrin Kinases as Suspected Therapeutic Targets in Arthritis: Exposed by "Criminal Profiling". Annals of the New York Academy of Sciences, 2006, 1069, 183-194.	1.8	14
67	Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life, 2006, 58, 389-394.	1.5	95
68	Hot, cool, and vibrant: Second international meeting on physiology and pharmacology of temperature regulation, Phoenix, Arizona, USA, March 3–6, 2006. Journal of Thermal Biology, 2006, 31, 1-3.	1.1	1
69	Cells That Trigger Fever. Cell Cycle, 2006, 5, 2195-2197.	1.3	39
70	Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats. Physiological Genomics, 2005, 21, 152-160.	1.0	42
71	Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1244-R1252.	0.9	188
72	Vioxx, Celebrex, BextraDo we have a new target for anti-inflammatory and antipyretic therapy?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1098-R1099.	0.9	6

#	Article	IF	CITATIONS
73	Expanding the febrigenic role of cyclooxygenase-2 to the previously overlooked responses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1253-R1257.	0.9	33
74	Albumin is not an irreplaceable carrier for amphipathic mediators of thermoregulatory responses to LPS: compensatory role of α1-acid glycoprotein. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R872-R878.	0.9	12
75	Thermoregulatory responses of rats to conventional preparations of lipopolysaccharide are caused by lipopolysaccharide per se— not by lipoprotein contaminants. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R348-R352.	0.9	32
76	Fever and hypothermia in systemic inflammation: recent discoveries and revisions. Frontiers in Bioscience - Landmark, 2005, 10, 2193.	3.0	284
77	Anorexia: the toll for lipopolysaccharide recognition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R274-R275.	0.9	0
78	Cholecystokinin: possible mediator of fever and hypothermia. Frontiers in Bioscience - Landmark, 2004, 9, 301.	3.0	11
79	Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Frontiers in Bioscience - Landmark, 2004, 9, 1977.	3.0	208
80	Signaling the brain in the early sickness syndrome: are sensory nerves involved?. Frontiers in Bioscience - Landmark, 2004, 9, 494.	3.0	52
81	A new function of the leptin receptor: mediation of the recovery from lipopolysaccharideâ€induced hypothermia. FASEB Journal, 2004, 18, 1949-1951.	0.2	43
82	Febrigenic signaling to the brain does not involve nitric oxide. British Journal of Pharmacology, 2004, 141, 1204-1213.	2.7	31
83	Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor. British Journal of Pharmacology, 2004, 143, 1023-1032.	2.7	61
84	Arginine vasopressin in fever: a still unsolved puzzle. Journal of Thermal Biology, 2004, 29, 407-411.	1.1	2
85	Do fever and anapyrexia exist? Analysis of set point-based definitions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R992-R995.	0.9	75
86	Bilateral splanchnicotomy does not affect lipopolysaccharide-induced fever in rats. Brain Research, 2003, 993, 227-229.	1.1	16
87	Plateletâ€Activating Factor: A Previously Unrecognized Mediator of Fever. Journal of Physiology, 2003, 553, 221-228.	1.3	41
88	Expression of genes controlling transport and catabolism of prostaglandin E ₂ in lipopolysaccharide fever. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R698-R706.	0.9	43
89	Near-term suppression of fever: inhibited synthesis or accelerated catabolism of prostaglandin E2?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R860-R865.	0.9	7
90	The organum vasculosum laminae terminalis in immune-to-brain febrigenic signaling: a reappraisal of lesion experiments. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R420-R428.	0.9	51

#	Article	IF	CITATIONS
91	The spleen: another mystery about its function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1378-R1379.	0.9	9
92	Role for the cholecystokinin-A receptor in fever: a study of a mutant rat strain and a pharmacological analysis. Journal of Physiology, 2003, 547, 941-949.	1.3	17
93	Selected Contribution: Ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. Journal of Applied Physiology, 2002, 92, 2667-2679.	1.2	309
94	Prostaglandin E ₂ -synthesizing enzymes in fever: differential transcriptional regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1104-R1117.	0.9	130
95	Fever responses of Zucker rats with and withoutfatty mutation of the leptin receptor. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R311-R316.	0.9	45
96	Does obesity affect febrile responsiveness?. International Journal of Obesity, 2001, 25, 586-589.	1.6	16
97	Are vagal efferents involved in the fever response to intraperitoneal lipopolysaccharide?. Journal of Thermal Biology, 2000, 25, 65-70.	1.1	15
98	Neural Route of Pyrogen Signaling to the Brain. Clinical Infectious Diseases, 2000, 31, S162-S167.	2.9	40
99	Six blind men and the manifold vagus. Autonomic Neuroscience: Basic and Clinical, 2000, 85, vii-ix.	1.4	1
100	Thermoregulatory manifestations of systemic inflammation: lessons from vagotomy. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 39-48.	1.4	55
101	Multiple neural mechanisms of fever. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 78-82.	1.4	52
102	Does the formation of lipopolysaccharide tolerance require intact vagal innervation of the liver?. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 111-118.	1.4	22
103	Lipopolysaccharide transport from the peritoneal cavity to the blood: is it controlled by the vagus nerve?. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 133-140.	1.4	36
104	Blood-borne, albumin-bound prostaglandin E ₂ may be involved in fever. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1840-R1844.	0.9	34
105	Vagotomy does not affect thermal responsiveness to intrabrain prostaglandin E2 and cholecystokinin octapeptide. Brain Research, 1999, 844, 157-163.	1.1	31
106	Paracelsus on wound treatment. Lancet, The, 1999, 354, 1910.	6.3	0
107	Vagus Nerve in Fever: Recent Developmentsa. Annals of the New York Academy of Sciences, 1998, 856, 298-299.	1.8	5
108	Pyretic and antipyretic signals within and without fever: a possible interplay. Medical Hypotheses, 1998, 50, 213-218.	0.8	27

#	Article	IF	CITATIONS
109	Fever and hypothermia: two adaptive thermoregulatory responses to systemic inflammation. Medical Hypotheses, 1998, 50, 219-226.	0.8	136
110	Chapter 7 Pathophysiology of opioids in hyperthermic states. Progress in Brain Research, 1998, 115, 111-127.	0.9	6
111	"Biphasic―fevers often consist of more than two phases. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R323-R331.	0.9	50
112	Signaling the brain in systemic inflammation: which vagal branch is involved in fever genesis?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R63-R68.	0.9	65
113	Methodology of fever research: why are polyphasic fevers often thought to be biphasic?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R332-R338.	0.9	65
114	Febrile nonresponsiveness of vagotomized animals: is it due to endotoxin translocation from the gut and tolerance?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R933-R935.	0.9	3
115	A difference of 5°C between ear and rectal temperatures in a febrile patient. American Journal of Emergency Medicine, 1997, 15, 383-385.	0.7	21
116	Posthemorrhagic antipyresis: what stage of fever genesis is affected?. Journal of Applied Physiology, 1997, 83, 359-365.	1.2	4
117	Peripheral Neural Inputs Annals of the New York Academy of Sciences, 1997, 813, 427-434.	1.8	34
118	Febrile Irresponsiveness of Vagotomized Rats to a Pyrogenic Signal Annals of the New York Academy of Sciences, 1997, 813, 437-444.	1.8	16
119	The Two Phases of Biphasic Fever?Two Different Strategies for Fighting Infection?. Annals of the New York Academy of Sciences, 1997, 813, 485-490.	1.8	9
120	Naltrexone Modifies Thermoregulatory Symptoms and Lessens the Severity of Heat Stroke in Guinea Pigs. Annals of the New York Academy of Sciences, 1997, 813, 548-552.	1.8	7
121	Endotoxin Shock-Associated Hypothermia Annals of the New York Academy of Sciences, 1997, 813, 733-737.	1.8	45
122	Heat stroke: opioid-mediated mechanisms. Journal of Applied Physiology, 1996, 81, 2565-2570.	1.2	56
123	Cholecystokinin octapeptide (CCK-8) injected into a cerebral ventricle induces a fever-like thermoregulatory response mediated by type B CCK-receptors in the rat. Brain Research, 1994, 638, 69-77.	1.1	56
124	Genesis of biphasic thermal response to intrapreoptically microinjected clonidine. Brain Research Bulletin, 1993, 31, 509-513.	1.4	26
125	Light at the end of the tunnel?. Nature, 1992, 356, 100-100.	13.7	Ο