

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8987068/publications.pdf Version: 2024-02-01

Μεναν

#	Article	IF	CITATIONS
1	Nitriding behavior and mechanical properties of AerMet100 steel and first-principles calculations of phase interfaces. Journal of Materials Research and Technology, 2022, 19, 46-60.	5.8	3
2	DFT investigation of carbon-expanded $\hat{l}\pm$ phase with different alloying element. Vacuum, 2022, 202, 111199.	3.5	1
3	Characterization of microstructure and corrosion properties of AZ91D magnesium alloy surface-treated by coating-nitriding. Journal of Materials Research and Technology, 2021, 14, 1559-1568.	5.8	11
4	Attractive effects of Re on electroless Ni-P-TiN nanocomposite coating. Applied Surface Science, 2021, 565, 150472.	6.1	8
5	Study on a Ni-P-nano TiN composite coating for significantly improving the service life of copper alloy synchronizer rings. Applied Surface Science, 2020, 504, 144116.	6.1	14
6	Microstructural changes and mechanical properties of AerMet100 steel surface-treated by plasma nitriding. Surface and Coatings Technology, 2020, 403, 126392.	4.8	5
7	Effect of the multiphase layer produced on surface of ZL205A aluminum alloy thin-wall barrel on quenching deformation. Surface and Coatings Technology, 2019, 372, 319-326.	4.8	2
8	The mechanism of surface nanocrystallization during plasma nitriding. Applied Surface Science, 2019, 488, 462-467.	6.1	20
9	Tribological behavior of diamond-like carbon in-situ formed on Fe3C-containing carburized layer by plasma carburizing. Applied Surface Science, 2019, 479, 482-488.	6.1	22
10	Microstructure and mechanical properties from an attractive combination of plasma nitriding and secondary hardening of M50 steel. Applied Surface Science, 2018, 455, 1-7.	6.1	32
11	High temperature plasma nitriding to modify Ti coated C17200 Cu surface: Microstructure and tribological properties. Vacuum, 2018, 147, 163-171.	3.5	5
12	A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy. Applied Surface Science, 2018, 431, 32-38.	6.1	19
13	Preparation and characterization of ultra-refined expanded martensite α′N. Surface and Coatings Technology, 2017, 326, 216-223.	4.8	7
14	Self-lubricating and anti-corrosion amorphous carbon/Fe3C composite coating on M50NiL steel by low temperature plasma carburizing. Surface and Coatings Technology, 2016, 304, 142-149.	4.8	33
15	First-principles investigation of structural, mechanical and electronic properties for Cu–Ti intermetallics. Computational Materials Science, 2016, 123, 70-78.	3.0	98
16	One-step plasma-assisted method for functionally graded Fe3O4/DLC coated carburized layer on steel. Diamond and Related Materials, 2016, 70, 18-25.	3.9	15
17	Microstructure formation and evolution mechanism of Cu-Ti coating during dual-magnetron sputtering and thermo plasma nitriding. Vacuum, 2016, 134, 25-28.	3.5	14
18	Combining thermo-diffusing titanium and plasma nitriding to modify C61900 Cu–Al alloy. Vacuum, 2016, 126, 41-44.	3.5	20

Mf Yan

#	Article	IF	CITATIONS
19	Microstructure and mechanical properties of copper–titanium–nitrogen multiphase layers produced by a duplex treatment on C17200 copper–beryllium alloy. Materials and Design, 2015, 84, 10-17.	7.0	33
20	Surface properties of low alloy steel treated by plasma nitrocarburizing prior to laser quenching process. Optics and Laser Technology, 2015, 67, 57-64.	4.6	36
21	Stability and properties of alloyed Îμ-(Fe 1â^' x M x) 3 N nitrides (M = Cr, Ni, Mo, V, Co, Nb, Mn, Ti and Cu): A first-principles calculations. Journal of Alloys and Compounds, 2014, 615, 854-862.	5.5	23
22	Microstructure and mechanical properties of multiphase layer formed during thermo-diffusing of titanium into the surface of C17200 copper–beryllium alloy. Applied Surface Science, 2014, 292, 225-230.	6.1	25
23	Laser quenching of plasma nitrided 30CrMnSiA steel. Materials & Design, 2014, 58, 154-160.	5.1	33
24	Influence of interstitial distribution on the elastic and electronic properties of phase by first-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 270-275.	2.1	2
25	Study on depth-related microstructure and wear property of rare earth nitrocarburized layer of M50NiL steel. Applied Surface Science, 2014, 289, 370-377.	6.1	42
26	Microstructure and mechanical properties of M50NiL steel plasma nitrocarburized with and without rare earths addition. Materials & Design, 2014, 55, 128-136.	5.1	48
27	Optimizing the mechanical properties of M50NiL steel by plasma nitrocarburizing. Applied Surface Science, 2014, 315, 28-35.	6.1	38
28	Microstructure and mechanical properties of multiphase layer formed during depositing Ti film followed by plasma nitriding on 2024 aluminum alloy. Applied Surface Science, 2014, 301, 410-417.	6.1	18
29	Effect of N distribution on elastic and electronic properties of hexagonal Îμ-Fe6Nx by first-principles calculations. Journal of Magnetism and Magnetic Materials, 2014, 354, 200-204.	2.3	17
30	Experimental and theoretical study on interaction between lanthanum and nitrogen during plasma rare earth nitriding. Applied Surface Science, 2013, 287, 381-388.	6.1	29
31	Microstructure and mechanical properties of the modified layer obtained by low temperature plasma nitriding of nanocrystallized 18Ni maraging steel. Materials & Design, 2013, 47, 575-580.	5.1	15
32	Behaviors and interactions of La atom with other foreign substitutional atoms (Al, Si, Ti, V, Cr, Mn,) Tj ETQq0 0 0 Science, 2013, 73, 120-127.	rgBT /Ove 3.0	rlock 10 Tf 5 14
33	Grain and grain boundary characters in surface layer of untreated and plasma nitrocarburized 18Ni maraging steel with nanocrystalline structure. Applied Surface Science, 2013, 273, 520-526.	6.1	12
34	The electronic structure and properties of Fe6(N1â^'xCx)2 carbonitrides by first-principles calculations. Physica B: Condensed Matter, 2012, 407, 4104-4107.	2.7	4
35	Effects of Rare Earth Elements on the Characteristics of Low Temperature Plasma Nitrocarburized Martensitic Stainless Steel. Journal of Materials Science and Technology, 2012, 28, 1046-1052.	10.7	21
36	Effects of rare earths addition on the microstructure, wear and corrosion resistances of plasma nitrided 30CrMnSiA steel. Surface and Coatings Technology, 2012, 206, 2363-2370.	4.8	48

Mf Yan

#	Article	IF	CITATIONS
37	Martensitic stainless steel modified by plasma nitrocarburizing at conventional temperature with and without rare earths addition. Surface and Coatings Technology, 2010, 205, 345-349.	4.8	25
38	Microstructure and properties of 17-4PH steel plasma nitrocarburized with a carrier gas containing rare earth elements. Materials Characterization, 2010, 61, 19-24.	4.4	25
39	Electronic structure and properties of (Fe1â^'xNix)4N (0≤â‰璽.0). Physica B: Condensed Matter, 2010, 405, 2700-2705.	2.7	10
40	Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing. Materials & Design, 2010, 31, 2355-2359.	5.1	47
41	Microstructure and mechanical properties of 17-4PH steel plasma nitrocarburized with and without rare earths addition. Journal of Materials Processing Technology, 2010, 210, 784-790.	6.3	22
42	The microstructure and properties of 17-4PH martensitic precipitation hardening stainless steel modified by plasma nitrocarburizing. Surface and Coatings Technology, 2010, 204, 2251-2256.	4.8	37
43	Influence of process time on microstructure and properties of 17-4PH steel plasma nitrocarburized with rare earths addition at low temperature. Applied Surface Science, 2010, 256, 6065-6071.	6.1	39
44	The effect of rare earth catalyst on carburizing kinetics in a sealed quench furnace with endothermic atmosphere. Applied Surface Science, 2001, 173, 91-94.	6.1	37