Muhammad Akram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8986953/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Applied Catalysis B: Environmental, 2021, 286, 119910.	10.8	209
2	Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: Role of graphitic N and radicals transformation. Journal of Hazardous Materials, 2020, 399, 123039.	6.5	152
3	Improving peroxymonosulfate activation by copper ion-saturated adsorbent-based single atom catalysts for the degradation of organic contaminants: electron-transfer mechanism and the key role of Cu single atoms. Journal of Materials Chemistry A, 2021, 9, 11604-11613.	5.2	85
4	Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer. Journal of Colloid and Interface Science, 2020, 575, 254-264.	5.0	48
5	Highly efficient removal of phosphate from aqueous media by pomegranate peel co-doping with ferric chloride and lanthanum hydroxide nanoparticles. Journal of Cleaner Production, 2021, 292, 125311.	4.6	25
6	Mechanism of sonication time on structure and adsorption properties of 3D peanut shell/graphene oxide aerogel. Science of the Total Environment, 2020, 739, 139983.	3.9	24
7	Adsorptive removal of phosphate by the bimetallic hydroxide nanocomposites embedded in pomegranate peel. Journal of Environmental Sciences, 2020, 91, 189-198.	3.2	23
8	Influence of Organic Ligands on the Colloidal Stability and Removal of ZnO Nanoparticles from Synthetic Waters by Coagulation. Processes, 2018, 6, 170.	1.3	22
9	The Removal of CuO Nanoparticles from Water by Conventional Treatment C/F/S: The Effect of pH and Natural Organic Matter. Molecules, 2019, 24, 914.	1.7	18
10	Coagulation and Dissolution of CuO Nanoparticles in the Presence of Dissolved Organic Matter Under Different pH Values. Sustainability, 2019, 11, 2825.	1.6	17
11	In-situ Cu-doped carbon-supported catalysts applied for high-salinity polycarbonate plant wastewater treatment and a coupling application. Chemical Engineering Journal, 2021, 416, 129441.	6.6	15
12	Enhanced removal of phosphate using pomegranate peel-modified nickel‑lanthanum hydroxide. Science of the Total Environment, 2022, 809, 151181.	3.9	15
13	Interaction of Arsenic Species with Organic Ligands: Competitive Removal from Water by Coagulation-Flocculation-Sedimentation (C/F/S). Molecules, 2019, 24, 1619.	1.7	13
14	Optimization of Antimony Removal by Coagulation-Flocculation-Sedimentation Process Using Response Surface Methodology. Processes, 2021, 9, 117.	1.3	13
15	Effect of Water Chemistry on Antimony Removal by Chemical Coagulation: Implications of ζ-Potential and Size of Precipitates. International Journal of Molecular Sciences, 2019, 20, 2945.	1.8	11
16	Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies. Molecules, 2021, 26, 7046.	1.7	7
17	Effect of Dissolved Organic Matter on Agglomeration and Removal of CuO Nanoparticles by Coagulation. Processes, 2019, 7, 455.	1.3	5