
Domenico Alvaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8986919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
2	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	13.5	2,277
3	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
4	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	13.5	1,718
5	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
6	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	13.5	1,417
7	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	8.2	1,155
8	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	8.2	964
9	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	2.9	801
10	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
11	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	2.9	683
12	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	13.5	620
13	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	2.9	605
14	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	2.9	523
15	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	7.7	478
16	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	2.9	416
17	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	2.9	407
18	lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	7.7	400

#	Article	IF	CITATIONS
19	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	7.7	396
20	Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nature Genetics, 2010, 42, 658-660.	9.4	389
21	Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nature Genetics, 2013, 45, 670-675.	9.4	339
22	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	2.9	333
23	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	2.9	284
24	Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 2011, 54, 2159-2172.	3.6	283
25	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	13.5	272
26	Proliferating Cholangiocytes: A Neuroendocrine Compartment in the Diseased Liver. Gastroenterology, 2007, 132, 415-431.	0.6	264
27	Human hepatic stem cell and maturational liver lineage biology. Hepatology, 2011, 53, 1035-1045.	3.6	264
28	Bile acid-induced liver toxicity: Relation to the hydrophobic-hydrophilic balance of bile acids. Medical Hypotheses, 1986, 19, 57-69.	0.8	261
29	International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nature Communications, 2015, 6, 8019.	5.8	245
30	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	2.9	245
31	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	13.5	228
32	Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology, 2005, 128, 121-137.	0.6	226
33	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	2.9	205
34	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	2.9	204
35	Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology, 2020, 72, 470-485.	3.6	203
36	Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology, 2011, 53, 293-305.	3.6	199

#	Article	IF	CITATIONS
37	Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical <i>in situ</i> study yielding evidence of maturational lineages. Journal of Anatomy, 2012, 220, 186-199.	0.9	194
38	Vascular Endothelial Growth Factor Stimulates Rat Cholangiocyte Proliferation Via an Autocrine Mechanism. Gastroenterology, 2006, 130, 1270-1282.	0.6	188
39	The biliary tree—a reservoir of multipotent stem cells. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 231-240.	8.2	187
40	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	2.9	177
41	Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology, 2000, 119, 1681-1691.	0.6	169
42	Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors. World Journal of Gastrointestinal Oncology, 2010, 2, 407.	0.8	169
43	Cholangiocyte proliferation and liver fibrosis. Expert Reviews in Molecular Medicine, 2009, 11, e7.	1.6	167
44	Cholangiocarcinoma: Update and future perspectives. Digestive and Liver Disease, 2010, 42, 253-260.	0.4	158
45	Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct–ligated rats. Gastroenterology, 1999, 117, 191-199.	0.6	155
46	Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology, 2000, 31, 555-561.	3.6	139
47	Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Human Molecular Genetics, 2012, 21, 5209-5221.	1.4	139
48	Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma. American Journal of Pathology, 2006, 169, 877-888.	1.9	136
49	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	1.8	130
50	Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology, 2012, 56, 2142-2153.	3.6	123
51	Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells Journal of Clinical Investigation, 1993, 92, 1314-1325.	3.9	122
52	Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions Journal of Clinical Investigation, 1997, 100, 1349-1362.	3.9	122
53	Human leukocyte antigen polymorphisms in italian primary biliary cirrhosis: A multicenter study of 664 patients and 1992 healthy controls. Hepatology, 2008, 48, 1906-1912.	3.6	120
54	European Guideline on IgG4â€related digestive disease – UEG and SGF evidenceâ€based recommendations. United European Gastroenterology Journal, 2020, 8, 637-666.	1.6	120

#	Article	IF	CITATIONS
55	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018, 23, 172-180.e3.	2.9	119
56	Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. Journal of Hepatology, 2022, 76, 1109-1121.	1.8	119
57	Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Laboratory Investigation, 2009, 89, 456-469.	1.7	118
58	Estrogens and the pathophysiology of the biliary tree. World Journal of Gastroenterology, 2006, 12, 3537.	1.4	113
59	cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. Journal of Hepatology, 2004, 41, 528-537.	1.8	110
60	Isolation of small polarized bile duct units Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6527-6531.	3.3	108
61	Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. Journal of Hepatology, 2004, 41, 905-912.	1.8	108
62	Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. The Lancet Gastroenterology and Hepatology, 2018, 3, 626-634.	3.7	103
63	Intracellular pathways mediating estrogen-induced cholangiocyte proliferation in the rat. Hepatology, 2002, 36, 297-304.	3.6	101
64	Cytotoxicity of bile salts against biliary epithelium: A study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology, 1997, 26, 9-21.	3.6	100
65	Biliary tree stem cells, precursors to pancreatic committed progenitors: Evidence for possible life-long pancreatic organogenesis. Stem Cells, 2013, 31, 1966-1979.	1.4	99
66	Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. Journal of Hepatology, 2015, 63, 1220-1228.	1.8	98
67	Gastrin inhibits cholangiocyte growth in bile duct–ligated rats by interaction with cholecystokinin-B/gastrin receptors viaD -myo-inositol 1,4,5-triphosphate–, Ca2+-, and protein kinase Cα–dependent mechanisms. Hepatology, 2000, 32, 17-25.	3.6	96
68	Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World Journal of Gastrointestinal Oncology, 2012, 4, 94.	0.8	95
69	Regulation and deregulation of cholangiocyte proliferation. Journal of Hepatology, 2000, 33, 333-340.	1.8	94
70	New insights into liver stem cells. Digestive and Liver Disease, 2009, 41, 455-462.	0.4	94
71	Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: A morphological study. Gastroenterology, 1996, 111, 1118-1124.	0.6	93
72	Serotonin Metabolism Is Dysregulated in Cholangiocarcinoma, which Has Implications for Tumor Growth. Cancer Research, 2008, 68, 9184-9193.	0.4	90

#	Article	IF	CITATIONS
73	Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. American Journal of Physiology - Renal Physiology, 2001, 281, G182-G190.	1.6	89
74	Nerve growth factor modulates the proliferative capacity of the intrahepatic biliary epithelium in experimental cholestasis. Gastroenterology, 2004, 127, 1198-1209.	0.6	87
75	Liver carcinogenesis: Rodent models of hepatocarcinoma and cholangiocarcinoma. Digestive and Liver Disease, 2013, 45, 450-459.	0.4	87
76	Profiles of Cancer Stem Cell Subpopulations in Cholangiocarcinomas. American Journal of Pathology, 2015, 185, 1724-1739.	1.9	87
77	Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nature Communications, 2015, 6, 8070.	5.8	86
78	γ-Aminobutyric Acid Inhibits Cholangiocarcinoma Growth by Cyclic AMP–Dependent Regulation of the Protein Kinase A/Extracellular Signal-Regulated Kinase 1/2 Pathway. Cancer Research, 2005, 65, 11437-11446.	0.4	85
79	Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Digestive and Liver Disease, 2009, 41, 156-163.	0.4	83
80	Secretin Stimulates Biliary Cell Proliferation by Regulating Expression of MicroRNA 125b and MicroRNA let7a in Mice. Gastroenterology, 2014, 146, 1795-1808.e12.	0.6	83
81	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	2.9	83
82	Concise review: Clinical programs of stem cell therapies for liver and pancreas. Stem Cells, 2013, 31, 2047-2060.	1.4	80
83	Morphological and Functional Features of Hepatic Cyst Epithelium in Autosomal Dominant Polycystic Kidney Disease. American Journal of Pathology, 2008, 172, 321-332.	1.9	79
84	Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NFâ€₽B and induction of apoptosis. International Journal of Cancer, 2009, 125, 565-576.	2.3	79
85	The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factorâ€Î²1 biliary secretion in mice. Hepatology, 2016, 64, 865-879.	3.6	79
86	H3 histamine receptor agonist inhibits biliary growth of BDL rats by downregulation of the cAMP-dependent PKA/ERK1/2/ELK-1 pathway. Laboratory Investigation, 2007, 87, 473-487.	1.7	77
87	Leptin Enhances Cholangiocarcinoma Cell Growth. Cancer Research, 2008, 68, 6752-6761.	0.4	77
88	High performance liquid chromatographic analysis of molecular species of phosphatidylcholine — development of quantitative assay and its application to human bile. Clinica Chimica Acta, 1983, 134, 281-295.	0.5	75
89	Descriptive epidemiology of cholangiocarcinoma in Italy. Digestive and Liver Disease, 2010, 42, 490-495.	0.4	75
90	Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes and Immunity, 2012, 13, 461-468.	2.2	75

#	Article	IF	CITATIONS
91	Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clinical and Experimental Immunology, 2016, 185, 61-71.	1.1	75
92	Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase–dependent pathway in rats. Gastroenterology, 2002, 123, 1226-1237.	0.6	74
93	Current Status on Cholangiocarcinoma and Gallbladder Cancer. Liver Cancer, 2017, 6, 59-65.	4.2	73
94	The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis. Journal of Hepatology, 2005, 43, 875-883.	1.8	72
95	Cholangiocytes and blood supply. World Journal of Gastroenterology, 2006, 12, 3546.	1.4	70
96	Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 83, 551-554.	0.2	69
97	Serum and bile biomarkers for cholangiocarcinoma. Current Opinion in Gastroenterology, 2009, 25, 279-284.	1.0	69
98	Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Digestive and Liver Disease, 2020, 52, 1383-1389.	0.4	69
99	After Damage of Large Bile Ducts by Gamma-Aminobutyric Acid, Small Ducts Replenish the Biliary Tree by Amplification of Calcium-Dependent Signaling and de Novo Acquisition of Large Cholangiocyte Phenotypes. American Journal of Pathology, 2010, 176, 1790-1800.	1.9	68
100	The function of alkaline phosphatase in the liver: Regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology, 2000, 32, 174-184.	3.6	67
101	Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats. American Journal of Physiology - Renal Physiology, 2006, 291, C307-G317.	1.6	67
102	Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Experimental Biology and Medicine, 2013, 238, 549-565.	1.1	64
103	Evidence for multipotent endodermal stem/progenitor cell populations in human gallbladder. Journal of Hepatology, 2014, 60, 1194-1202.	1.8	62
104	An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs. Journal of Hepatology, 2021, 75, 572-581.	1.8	62
105	α-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca2+- and PKC-dependent stimulation of cAMP. Hepatology, 2004, 40, 1116-1127.	3.6	61
106	Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. American Journal of Physiology - Renal Physiology, 2009, 297, G11-G26.	1.6	61
107	Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology, 2012, 55, 2041-2042.	3.6	60
108	Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells International, 2016, 2016, 1-12.	1.2	60

#	Article	IF	CITATIONS
109	Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells. Scientific Reports, 2017, 7, 17667.	1.6	60
110	Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-Î ³ expression and decrease of PKA activity. American Journal of Physiology - Renal Physiology, 2003, 284, G683-G694.	1.6	59
111	Cholangiocarcinoma in Italy: A national survey on clinical characteristics, diagnostic modalities and treatment. Results from the "Cholangiocarcinoma―committee of the Italian Association for the Study of Liver disease. Digestive and Liver Disease, 2011, 43, 60-65.	0.4	59
112	Hepatic Stem/Progenitor Cell Activation Differs between Primary Sclerosing and Primary Biliary Cholangitis. American Journal of Pathology, 2018, 188, 627-639.	1.9	59
113	Hepatic microvascular features in experimental cirrhosis: a structural and morphometrical study in CCl4-treated rats. Journal of Hepatology, 2000, 33, 555-563.	1.8	59
114	Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes. Gastroenterology, 2002, 123, 336-344.	0.6	58
115	Alfa and beta estrogen receptors and the biliary tree. Molecular and Cellular Endocrinology, 2002, 193, 105-108.	1.6	57
116	Insulin inhibits secretin-induced ductal secretion by activation of PKC alpha and inhibition of PKA activity. Hepatology, 2002, 36, 641-651.	3.6	55
117	Adrenergic receptor agonists prevent bile duct injury induced by adrenergic denervation by increased cAMP levels and activation of Akt. American Journal of Physiology - Renal Physiology, 2006, 290, G813-G826.	1.6	55
118	Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium. Gastroenterology, 2002, 122, 1058-1069.	0.6	54
119	New insights on cholangiocarcinoma. World Journal of Gastrointestinal Oncology, 2010, 2, 136.	0.8	54
120	Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors. American Journal of Physiology - Renal Physiology, 2011, 301, G634-G643.	1.6	53
121	Increased susceptibility of cholangiocytes to tumor necrosis factor-α cytotoxicity after bile duct ligation. American Journal of Physiology - Cell Physiology, 2003, 285, C183-C194.	2.1	52
122	Serum and Biliary Insulin-like Growth Factor I and Vascular Endothelial Growth Factor in Determining the Cause of Obstructive Cholestasis. Annals of Internal Medicine, 2007, 147, 451.	2.0	52
123	Pathway-based analysis of primary biliary cirrhosis genome-wide association studies. Genes and Immunity, 2013, 14, 179-186.	2.2	52
124	Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterology, 2014, 14, 204.	0.8	49
125	Regulation of ERK/JNK/p70S6K in two rat models of liver injury and fibrosis. Journal of Hepatology, 2003, 39, 528-537.	1.8	48
126	Multipotent stem/progenitor cells in the human foetal biliary tree. Journal of Hepatology, 2012, 57, 987-994.	1.8	48

#	Article	IF	CITATIONS
127	Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats. American Journal of Physiology - Renal Physiology, 2003, 284, G837-G852.	1.6	46
128	New insights on the molecular and cell biology of human cholangiopathies. Molecular Aspects of Medicine, 2008, 29, 50-57.	2.7	46
129	Increased local dopamine secretion has growthâ€promoting effects in cholangiocarcinoma. International Journal of Cancer, 2010, 126, 2112-2122.	2.3	46
130	Melatonin exerts by an autocrine loop antiproliferative effects in cholangiocarcinoma; its synthesis is reduced favoring cholangiocarcinoma growth. American Journal of Physiology - Renal Physiology, 2011, 301, G623-G633.	1.6	46
131	Regulation of endocytic-transcytotic pathways and bile secretion by phosphatidylinositol 3-kinase in rats. Gastroenterology, 1997, 113, 954-965.	0.6	45
132	Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology, 2019, 69, 622-638.	3.6	45
133	Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. Journal of Anatomy, 2016, 228, 474-486.	0.9	42
134	Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut, 2018, 67, 1517-1524.	6.1	42
135	Molecular identification and functional characterization of Mdr1a in rat cholangiocytes. Gastroenterology, 2000, 119, 1113-1122.	0.6	41
136	Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2â^'/â^' mice by diminishing senescence of cholangiocytes. Laboratory Investigation, 2018, 98, 1449-1464.	1.7	41
137	Physico-chemical factors predisposing to pigment gallstone formation in liver cirrhosis. Journal of Hepatology, 1990, 10, 228-234.	1.8	40
138	Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 972-989.	3.6	40
139	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part I: Classification, diagnosis and staging. Digestive and Liver Disease, 2020, 52, 1282-1293.	0.4	40
140	Liver Metastases of Intrahepatic Cholangiocarcinoma: Implications for an Updated Staging System. Hepatology, 2021, 73, 2311-2325.	3.6	40
141	Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 75, 1377-1386.	1.8	40
142	Cholangiocarcinoma: increasing burden of classifications. Hepatobiliary Surgery and Nutrition, 2013, 2, 272-80.	0.7	39
143	Cutaneous adverse reactions after <scp>COVID</scp> â€19 vaccines in a cohort of 2740 Italian subjects: An observational study. Dermatologic Therapy, 2021, 34, e15153.	0.8	39
144	Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. International Journal of Molecular Sciences, 2018, 19, 2917.	1.8	38

#	Article	IF	CITATIONS
145	Insulin-like growth factor-1 isoforms in rat hepatocytes and cholangiocytes and their involvement in protection against cholestatic injury. Laboratory Investigation, 2008, 88, 986-994.	1.7	37
146	The Fas/Fas ligand apoptosis pathway underlies immunomodulatory properties of human biliary tree stem/progenitor cells. Journal of Hepatology, 2014, 61, 1097-1105.	1.8	37
147	Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets Journal of Clinical Investigation, 1995, 96, 665-675.	3.9	37
148	Taurocholate feeding prevents CCl ₄ -induced damage of large cholangiocytes through PI3-kinase-dependent mechanism. American Journal of Physiology - Renal Physiology, 2003, 284, G290-G301.	1.6	35
149	Activation of the IGF1 System Characterizes Cholangiocyte Survival During Progression of Primary Biliary Cirrhosis. Journal of Histochemistry and Cytochemistry, 2007, 55, 327-334.	1.3	35
150	Prolactin stimulates the proliferation of normal female cholangiocytes by differential regulation of Ca2+-dependent PKC isoforms. BMC Physiology, 2007, 7, 6.	3.6	35
151	Knockout of the neurokinin-1 receptor reduces cholangiocyte proliferation in bile duct-ligated mice. American Journal of Physiology - Renal Physiology, 2011, 301, G297-G305.	1.6	35
152	Organoids and Spheroids as Models for Studying Cholestatic Liver Injury and Cholangiocarcinoma. Hepatology, 2021, 74, 491-502.	3.6	35
153	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part II: Treatment. Digestive and Liver Disease, 2020, 52, 1430-1442.	0.4	35
154	An oestrogen receptor Î ² -selective agonist exerts anti-neoplastic effects in experimental intrahepatic cholangiocarcinoma. Digestive and Liver Disease, 2012, 44, 134-142.	0.4	34
155	Endothelin inhibits cholangiocarcinoma growth by a decrease in the vascular endothelial growth factor expression. Liver International, 2009, 29, 1031-1042.	1.9	33
156	TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS ONE, 2017, 12, e0183932.	1.1	33
157	Real-world experience with obeticholic acid in patients with primary biliary cholangitis. JHEP Reports, 2021, 3, 100248.	2.6	33
158	Effect of taurine administration on liver lipids in guinea pig. Experientia, 1986, 42, 407-408.	1.2	32
159	Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Research and Therapy, 2017, 8, 68.	2.4	32
160	Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in earlyâ€stage primary biliary cholangitis. FASEB Journal, 2019, 33, 10269-10279.	0.2	32
161	Cholangiocarcinoma: A position paper by the Italian Society of Gastroenterology (SIGE), the Italian Association of Hospital Gastroenterology (AIGO), the Italian Association of Medical Oncology (AIOM) and the Italian Association of Oncological Radiotherapy (AIRO). Digestive and Liver Disease, 2010, 42, 831-838.	0.4	31
162	The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1–Mediated Biliary Senescence. American Journal of Pathology, 2018, 188, 2264-2280.	1.9	31

#	Article	IF	CITATIONS
163	Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clinical Proteomics, 2019, 16, 37.	1.1	31
164	Epidemiology of primary biliary cholangitis in Italy: Evidence from a real-world database. Digestive and Liver Disease, 2019, 51, 724-729.	0.4	31
165	Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Annals of Translational Medicine, 2013, 1, 27.	0.7	31
166	Molecular composition of biliary phosphatidylcholines, as related to cholesterol saturation, transport and nucleation in human gallbladder bile. Journal of Hepatology, 1992, 15, 59-66.	1.8	30
167	The α ₂ -adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. American Journal of Physiology - Cell Physiology, 2007, 293, C1252-C1262.	2.1	30
168	Taurocholate Feeding to Bile Duct Ligated Rats Prevents Caffeic Acid-Induced Bile Duct Damage by Changes in Cholangiocyte VEGF Expression. Experimental Biology and Medicine, 2009, 234, 462-474.	1.1	30
169	Recent advances in the regulation of cholangiocyte proliferation and function during extrahepatic cholestasis. Digestive and Liver Disease, 2010, 42, 245-252.	0.4	30
170	Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Scientific Reports, 2019, 9, 5559.	1.6	30
171	Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.	3.6	30
172	Polycystic liver diseases. Digestive and Liver Disease, 2010, 42, 261-271.	0.4	29
173	The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma. PLoS ONE, 2019, 14, e0210077.	1.1	29
174	Control of Cholangiocyte Adaptive Responses by Visceral Hormones and Neuropeptides. Clinical Reviews in Allergy and Immunology, 2009, 36, 13-22.	2.9	28
175	Accuracy of Transient Elastography in Assessing Fibrosis at Diagnosis in NaÃ⁻ve Patients With Primary Biliary Cholangitis: A Dual Cutâ€Off Approach. Hepatology, 2021, 74, 1496-1508.	3.6	28
176	High-dose esomeprazole and amoxicillin dual therapy for first-line Helicobacter pylori eradication: a proof of concept study. Annals of Gastroenterology, 2015, 28, 448-51.	0.4	28
177	Role of kinases and phosphatases in the regulation of fluid secretion and Cl-/HCO3- exchange in cholangiocytes. American Journal of Physiology - Renal Physiology, 1997, 273, G303-G313.	1.6	27
178	Gastrin reverses established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats by activation of apoptosis through increased expression of Ca2+ -dependent PKC isoforms. Liver International, 2003, 23, 78-88.	1.9	27
179	Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion. American Journal of Physiology - Cell Physiology, 2011, 300, C1078-C1089.	2.1	27
180	Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE, 2015, 10, e0142124.	1.1	27

#	Article	IF	CITATIONS
181	Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells. Scientific Reports, 2017, 7, 14419.	1.6	27
182	X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis. Gastroenterology, 2021, 160, 2483-2495.e26.	0.6	27
183	Acute cholestatic hepatitis induced by bupropion prescribed as pharmacological support to stop smoking. A case report. Digestive and Liver Disease, 2001, 33, 703-706.	0.4	25
184	Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells, 2019, 8, 914.	1.8	25
185	Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver International, 2019, 39, 79-97.	1.9	25
186	Effect of low or high doses of lowâ€molecularâ€weight heparin on thrombin generation and other haemostasis parameters in critically ill patients with COVIDâ€19. British Journal of Haematology, 2020, 190, e214-e218.	1.2	25
187	Cholangiocarcinoma: novel therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 345-357.	1.5	25
188	Expression of vascular endothelial growth factors and their receptors by hepatic progenitor cells in human liver diseases. Hepatobiliary Surgery and Nutrition, 2013, 2, 68-77.	0.7	25
189	Appropriateness of the Indication for Colonoscopy. Journal of Clinical Gastroenterology, 2012, 46, 590-594.	1.1	24
190	Influence of tauroursodeoxycholic and taurodeoxycholic acids on hepatic metabolism and biliary secretion of phosphatidylcholine in the isolated rat liver. Lipids and Lipid Metabolism, 1986, 878, 216-224.	2.6	23
191	Tamoxifen in treatment of primary biliary cirrhosis. Hepatology, 2004, 39, 1175-1176.	3.6	23
192	Cytoprotective effects of taurocholic acid feeding on the biliary tree after adrenergic denervation of the liver. Liver International, 2007, 27, 558-568.	1.9	23
193	Hepatic progenitor cells express SerpinB3. BMC Cell Biology, 2014, 15, 5.	3.0	23
194	Primary Biliary Cholangitis: advances in management and treatment of the disease. Digestive and Liver Disease, 2017, 49, 841-846.	0.4	23
195	Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes. Stem Cells, 2016, 34, 1332-1342.	1.4	22
196	Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors. Scientific Reports, 2017, 7, 6080.	1.6	22
197	Soluble CD163 and mannose receptor as markers of liver disease severity and prognosis in patients with primary biliary cholangitis. Liver International, 2020, 40, 1408-1414.	1.9	22
198	Inhibition of biliary bicarbonate secretion in ethinyl estradiol-induced cholestasis is not associated with impaired activity of the Clâ^'/HCO3â^' exchanger in the rat. Journal of Hepatology, 1997, 26, 146-157.	1.8	20

#	Article	IF	CITATIONS
199	Procedureâ€related bleeding risk in patients with cirrhosis and severe thrombocytopenia. European Journal of Clinical Investigation, 2021, 51, e13508.	1.7	20
200	Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World Journal of Gastroenterology, 2019, 25, 4343-4359.	1.4	20
201	Biliary secretion of phosphatidylcholine and its molecular species in cholecystectomized T-tube patients: Effects of bile acid hydrophilicity. Biochemical Medicine and Metabolic Biology, 1986, 36, 125-135.	0.7	18
202	Spontaneous formation of pigmentary precipitates in bile salt-depleted rat bile and its prevention by micelle-forming bile salts. Gastroenterology, 1990, 98, 444-453.	0.6	18
203	Bile salts regulate proliferation and apoptosis of liver cells by modulating the IGF1 system. Digestive and Liver Disease, 2007, 39, 654-662.	0.4	18
204	Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury. Hepatology, 2020, 72, 2219-2227.	3.6	18
205	Von Willebrand factor with increased binding capacity is associated with reduced platelet aggregation but enhanced agglutination in COVID-19 patients: another COVID-19 paradox?. Journal of Thrombosis and Thrombolysis, 2021, 52, 105-110.	1.0	18
206	Bismuth-based Quadruple Therapy Following H. pylori Eradication Failures: a Multicenter Study in Clinical Practice. Journal of Gastrointestinal and Liver Diseases, 2020, 26, 225-229.	0.5	18
207	Multipotent stem cells in the biliary tree. Italian Journal of Anatomy and Embryology, 2010, 115, 85-90.	0.1	18
208	Improvement of estradiol 17β-D-glucuronide cholestasis by intravenous administration of dimethylethanolamine in the rat. Hepatology, 1991, 13, 1158-1172.	3.6	17
209	Prostate Apoptosis Response-4 Is Expressed in Normal Cholangiocytes, Is Down-Regulated in Human Cholangiocarcinoma, and Promotes Apoptosis of Neoplastic Cholangiocytes When Induced Pharmacologically. American Journal of Pathology, 2010, 177, 1779-1790.	1.9	17
210	Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology, 2022, 75, 814-830.	3.6	17
211	Two-week Triple Therapy with either Standard or High-dose Esomeprazole for First-line H. pylori Eradication. Journal of Gastrointestinal and Liver Diseases, 2020, 25, 147-150.	0.5	17
212	Estrogens maintain bile duct mass and reduce apoptosis after biliodigestive anastomosis in bile duct ligated rats. Journal of Hepatology, 2006, 44, 1158-1166.	1.8	16
213	Liver Capsule: Biliary Tree Stem Cell Subpopulations. Hepatology, 2016, 64, 644-644.	3.6	16
214	Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Scientific Reports, 2021, 11, 2557.	1.6	16
215	Abnormalities in erythrocyte membrane phospholipids in patients with liver cirrhosis. Biochemical Medicine, 1982, 28, 157-164.	0.5	15
216	Effect ofS-adenosyl-l-methionine on ethanol cholestasis and hepatotoxicity in isolated perfused rat liver. Digestive Diseases and Sciences, 1995, 40, 1592-1600.	1.1	15

#	Article	IF	CITATIONS
217	Effect of S-adenosyl-L-methionine and dilinoleoylphosphatidylcholine on liver lipid composition and ethanol hepatotoxicity in isolated perfused rat liver. Digestive Diseases and Sciences, 1998, 43, 2211-2222.	1.1	15
218	The prognosis of perihilar cholangiocarcinoma after radical treatments. Hepatology, 2012, 56, 800-802.	3.6	15
219	Primary biliary cholangitis management: controversies, perspectives and daily practice implications from an expert panel. Liver International, 2020, 40, 2590-2601.	1.9	15
220	Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials, 2021, 277, 121067.	5.7	15
221	Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology, 2022, 76, 1617-1633.	3.6	15
222	Taurohyodeoxycholate- and tauroursodeoxycholate-induced hypercholeresis is augmented in bile duct ligated rats. Journal of Hepatology, 2003, 38, 136-147.	1.8	14
223	Polycystins play a key role in the modulation of cholangiocyte proliferation. Digestive and Liver Disease, 2010, 42, 377-385.	0.4	14
224	Knockdown of Hepatic Gonadotropin-Releasing Hormone by Vivo-Morpholino Decreases Liver Fibrosis in Multidrug Resistance Gene 2 Knockout Mice by Down-Regulation of miR-200b. American Journal of Pathology, 2017, 187, 1551-1565.	1.9	14
225	CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2246-2256.	1.8	14
226	Study of biologically relevant physical-chemical properties of bile salts by reverse-phase liquid chromatography. Chromatographia, 1987, 24, 277-281.	0.7	13
227	Functional and ultrastructural features of ethanol/bile salts interaction in the isolated perfused rat liver. Hepatology, 1995, 21, 1120-1129.	3.6	13
228	Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide. PLoS ONE, 2015, 10, e0134677.	1.1	13
229	What to Do and What Not to Do in the Management of Opioid-Induced Constipation: A Choosing Wisely Report. Pain and Therapy, 2020, 9, 657-667.	1.5	13
230	Extracellular Signalâ€Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology, 2021, 74, 2007-2020.	3.6	12
231	Platelet and immune signature associated with a rapid response to the BNT162b2 mRNA COVIDâ€19 vaccine. Journal of Thrombosis and Haemostasis, 2022, 20, 961-974.	1.9	12
232	Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Frontiers in Medicine, 2020, 7, 479.	1.2	11
233	The fetal liver as cell source for the regenerative medicine of liver and pancreas. Annals of Translational Medicine, 2013, 1, 13.	0.7	11
234	Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut, 2022, , gutjnl-2022-327099.	6.1	11

#	Article	IF	CITATIONS
235	Impaired hepatic handling and processing of lysophosphatidylcholine in rats with liver cirrhosis. Gastroenterology, 1991, 101, 228-237.	0.6	10
236	Ticlopidine-induced cholestasis. European Journal of Gastroenterology and Hepatology, 1994, 6, 943-950.	0.8	10
237	Effect of Brefeldin A on transcytotic vesicular pathway and bile secretion: A study on the isolated perfused rat liver and isolated rat hepatocyte couplets. Hepatology, 1995, 21, 450-459.	3.6	10
238	Atorvastatin-Induced Prolonged Cholestasis with Bile Duct Damage. Clinical Drug Investigation, 2010, 30, 205-209.	1.1	10
239	Cholangiocarcinoma: A cancer in search of the right classification. Hepatology, 2012, 56, 1585-1586.	3.6	10
240	Notch2 signaling and undifferentiated liver cancers: Evidence of hepatic stem/progenitor cell origin. Hepatology, 2013, 58, 1188-1188.	3.6	10
241	Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opinion on Investigational Drugs, 2021, 30, 365-375.	1.9	10
242	Transport, utilization and biliary secretion of lysophosphatidylcholine in the rat liver. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 91-99.	1.4	9
243	Effect of ursodeoxycholic acid on intracellular pH regulation in isolated rat bile duct epithelial cells. American Journal of Physiology - Renal Physiology, 1993, 265, G783-G791.	1.6	9
244	Effect of pharmacological modulation of liver P-glycoproteins on cyclosporin A biliary excretion and cholestasis: a study in isolated perfused rat liver. Digestive Diseases and Sciences, 1999, 44, 2196-2204.	1.1	9
245	Molecular Landscape and Therapeutic Strategies in Cholangiocarcinoma: An Integrated Translational Approach towards Precision Medicine. International Journal of Molecular Sciences, 2021, 22, 5613.	1.8	9
246	Common Clinical Practice for Opioid-Induced Constipation: A Physician Survey. Journal of Pain Research, 2021, Volume 14, 2255-2264.	0.8	9
247	First- and second-line eradication with modified sequential therapy and modified levofloxacin-amoxicillin-based triple therapy. Annals of Gastroenterology, 2014, 27, 357-361.	0.4	8
248	Penile metastasis from primary cholangiocarcinoma: the first case report. BMC Gastroenterology, 2013, 13, 149.	0.8	7
249	The challenge of cholangiocarcinoma diagnosis: The turning point is in extracellular vesicles?. Hepatology, 2017, 66, 1029-1031.	3.6	7
250	Cholangiocytes: Cell transplantation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1516-1523.	1.8	7
251	Recommendations on the Use of Magnetic Resonance Imaging for Collaborative Multicenter Studies in Primary Sclerosing Cholangitis. Hepatology, 2019, 69, 1358-1359.	3.6	7
252	Emerging Therapies for Advanced Cholangiocarcinoma: An Updated Literature Review. Journal of Clinical Medicine, 2021, 10, 4901.	1.0	7

#	Article	IF	CITATIONS
253	Machine learning in primary biliary cholangitis: A novel approach for risk stratification. Liver International, 2022, 42, 615-627.	1.9	7
254	Differential patterns of lipid-protein association in fast and slow cholesterol nucleating human gallbladder biles: implications for cholesterol nucleation from biliary lipid carriers. Lipids and Lipid Metabolism, 1991, 1086, 125-133.	2.6	6
255	Progranulin and cholangiocarcinoma: another bad boy on the block!. Gut, 2012, 61, 170-171.	6.1	6
256	Cholangiocarcinoma: Stateâ€ofâ€theâ€art knowledge and challenges. Liver International, 2019, 39, 5-6.	1.9	6
257	Free episomal and integrated HBV DNA in HBsAg-negative patients with intrahepatic cholangiocarcinoma. Oncotarget, 2019, 10, 3931-3938.	0.8	6
258	Hepatic 3α-dehydrogenation and 7α-hydroxylation of deoxycholic acid in the guinea-pig. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 85, 805-810.	0.2	5
259	Cholangiocarcinomas: New Insights from the Discovery of Stem Cell Niches in Peribiliary Glands of the Biliary Tree. Advances in Hepatology, 2014, 2014, 1-10.	1.3	5
260	PTPN3 Mutations and HBV May Exert Synergistic Effects in the Origin of the Intrahepatic Cholangiocarcinoma. Gastroenterology, 2014, 147, 719-720.	0.6	5
261	Selective hepatic enrichment of polyunsaturated phosphatidylcholines after intravenous administration of dimethylethanolamine in the rat. Lipids and Lipid Metabolism, 1989, 1006, 116-120.	2.6	4
262	Human biliary tree stem/progenitor cells immunomodulation: Role of hepatocyte growth factor. Hepatology Research, 2017, 47, 465-479.	1.8	4
263	Islet Regeneration and Pancreatic Duct Glands in Human and Experimental Diabetes. Frontiers in Cell and Developmental Biology, 2022, 10, 814165.	1.8	4
264	Ultrastructural Features of Danazol-Induced Cholestasis: A Case Study. Ultrastructural Pathology, 1996, 20, 491-495.	0.4	3
265	Metabolic oxidation controls the hepatic stem cells (HpSCs) fate and the hepatic lineage organization in physiologic and pathologic conditions. Hepatology, 2012, 56, 2006-2007.	3.6	3
266	Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy, 2022, , .	0.3	3
267	Opioid-Induced Constipation in Real-World Practice: A Physician Survey, 1 Year Later. Pain and Therapy, 2022, 11, 477-491.	1.5	3
268	Effect of Endotoxin Tolerance on Drug Hepatotoxicity: Amelioration of Taurolithocholate Cholestasis in the Perfused Rat Liver. Digestion, 1987, 36, 74-80.	1.2	2
269	Camp stimulates secretory and proliferative capacity of the rat intrahepatic biliary epithelium through the PKA system. Gastroenterology, 2000, 118, A929.	0.6	2
270	Expression of estrogen receptors in cholangiocytes of patients with primary biliary cirrhosis (PBC) and relationship with immunohistochemical markers of cell proliferation and death. Journal of Hepatology, 2003, 38, 184-185.	1.8	2

#	Article	IF	CITATIONS
271	Nerve growth factor (NGF) regulates the proliferative activities of the intraphepatic biliary epithelium through the modulation of ERK and PI-3-kinase pathways. Journal of Hepatology, 2003, 38, 10.	1.8	2
272	Environmental Contribution to Pathogenesis of Cyst Formation in Autosomal-Dominant Polycystic Liver Diseases. Gastroenterology, 2012, 142, e26-e27.	0.6	2
273	Gallstones: Bad Company for the Steatotic Liver. Gastroenterology, 2017, 152, 1284-1286.	0.6	2
274	Pre-treatment risk stratification in primary biliary cholangitis: A predictive model to guide first-line combination therapy. Digestive and Liver Disease, 2018, 50, 21-22.	0.4	2
275	Vav1 Sustains the In Vitro Differentiation of Normal and Tumor Precursors to Insulin Producing Cells Induced by all-Trans Retinoic Acid (ATRA). Stem Cell Reviews and Reports, 2021, 17, 673-684.	1.7	2
276	Stem Cell Populations Giving Rise to Liver, Biliary Tree, and Pancreas. , 2013, , 283-310.		2
277	Estrogen receptors are expressed in rat cholangiocytes and upregulated after bile duct ligation: Their inhibition with chronic tamoxifen treatment markedly decreases secretin-induced ductal bile secretion. Gastroenterology, 1998, 114, A1202-A1203.	0.6	1
278	Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium. Gastroenterology, 2000, 118, A930.	0.6	1
279	Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes. Journal of Hepatology, 2002, 36, 140.	1.8	1
280	314 The activation of IGF1 system is a requisite for cholangiocyte survival during the progression of primary biliary cirrhosis (PBC). Journal of Hepatology, 2006, 44, S121-S122.	1.8	1
281	922 MULTIPOTENT STEM CELLS RESIDE IN HUMAN EXTRAHEPATIC BILE DUCTS AND CAN GIVE RISE TO HEPATOCYTES, CHOLANGIOCYTES AND PANCREATIC ISLET CELLS. Journal of Hepatology, 2010, 52, S358.	1.8	1
282	Genotype-Phenotype Analysis across 130,422 Genetic Variants Identifies Rspo3 as the First Genome-Wide Significant Modifier Gene in Primary Sclerosing Cholangitis. Journal of Hepatology, 2016, 64, S642-S643.	1.8	1
283	Cholangiocarcinoma Stem-Like Subset Shapes Tumor-Initiating Niche by Educating Associated Macrophages. Journal of Hepatology, 2016, 64, S157-S158.	1.8	1
284	Microgravity maintains stemness and enhance glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Digestive and Liver Disease, 2017, 49, e14.	0.4	1
285	Epidemiology of primary biliary cholangitis in Italy: evidences from a real world database. Digestive and Liver Disease, 2017, 49, e14.	0.4	1
286	Secretin-Stimulation of Bicarbonate Secretion Reduces Biliary Damage and Liver Fibrosis in a Model of Primary Biliary Cholangitis (PBC). Gastroenterology, 2017, 152, S1060.	0.6	1
287	Primary biliary cholangitis (PBC): The patient journey to diagnosis and through the disease. Digestive and Liver Disease, 2018, 50, 42-43.	0.4	1
288	SAT-485-European cliolangiocarcinoma (EU-CCA) registry: An initiative to broaden awareness on the second most common primary liver cancer. Journal of Hepatology, 2019, 70, e846-e847.	1.8	1

#	Article	IF	CITATIONS
289	Functional and ultrastructural features of ethanol/bile salts interaction in the isolated perfused rat liver. Hepatology, 1995, 21, 1120-1129.	3.6	1
290	Primary biliary cholangitis: perception and expectation of illness. Digestive and Liver Disease, 2022, 54, 1230-1233.	0.4	1
291	D2 but not D1 dopaminergic agonists inhibit secretory processes of the intrahepatic biliary epithelium through a PKC-dependent mechanism. Gastroenterology, 2000, 118, A929.	0.6	0
292	Corticosteroids modulate the secretory processes of intrahepatic biliary epithelium. Journal of Hepatology, 2000, 32, 118.	1.8	0
293	Estrogens stimulate cholangiocyte proliferation through the activation of the ERK1/2 system and the adapter protein Sch. Digestive and Liver Disease, 2001, 33, A16.	0.4	0
294	Estrogens induce cholangiocyte proliferation through the activation of the ERK1/2 system and the adapter proteins Sch, and Src. Journal of Hepatology, 2002, 36, 28.	1.8	0
295	87 Insulin like growth factor 1 (IGF-1) and estrogens modulate neoplastic cell growth in human cholangiocarcinoma. Journal of Hepatology, 2004, 40, 30.	1.8	0
296	96 Estrogens and IGF1 promote the proliferation of hepatic cyst epithelium in autosomal dominant polycystic kidney disease (ADPKD). Journal of Hepatology, 2006, 44, S42-S43.	1.8	0
297	[312] VEGF PLAYS A MAJOR ROLE IN MEDIATING ESTROGENS PROLIFERATE EFFECTS ON HUMAN INTRAHEPATIC CHOLANGIOCARCINOMA. Journal of Hepatology, 2007, 46, S123.	1.8	0
298	Biliary insulin like growth factor-1 (IGF1) is a sensitive marker for the diagnosis of extrahepatic cholangiocarcinoma. Digestive and Liver Disease, 2007, 39, A5.	0.4	0
299	CS1.3 "LOCALâ€IGF1 (INSULIN-LIKE GROWTH FACTOR 1) ISOFORM IN RAT HEPATOCYTES AND CHOLANGIOCYTES AND ITS INVOLVEMENT IN PROTECTION AGAINST CHOLESTATIC INJURY. Digestive and Liver Disease, 2008, 40, S2.	0.4	0
300	CS2.2 LEPTIN ENHANCES CHOLANGIOCARCINOMA CELL GROWTH: AN IN VIVO EXPERIMENTAL STUDY. Digestive and Liver Disease, 2008, 40, S4.	0.4	0
301	OC3.01.5 ESTROGENS INDUCE PROLIFERATION OF HUMAN CHOLANGIOCARCINOMA BY ENHANCING THE EXPRESSION AND SECRETION OF VASCULAR ENDOTHELIAL GROWTH FACTOR. Digestive and Liver Disease, 2008, 40, S37.	0.4	0
302	322 ESTROGENS STIMULATE THE GROWTH OF HUMAN CHOLANGIOCARCINOMA BY ACTIVATING THE VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) SYSTEM. Journal of Hepatology, 2008, 48, S127.	1.8	0
303	450 HEPATOCYTES AND CHOLANGIOCYTES EXPRESS THE LOCALLY ACTING IGF1 ISOFORM WHICH IS INVOLVED IN CELL PROLIFERATION AND RESISTANCE AGAINST CHOLESTATIC INJURY. Journal of Hepatology, 2008, 48, S171-S172.	1.8	0
304	262 POLYCYSTIN-1 AND – 2 PLAY A KEY ROLE IN THE MODULATION OF CHOLANGIOCYTE PROLIFERATION. Journal of Hepatology, 2009, 50, S104.	1.8	0
305	Ascofuranone: A Possible Therapeutic Tool for Autosomal Dominant Polycystic Kidney Disease? – Letter. Molecular Cancer Therapeutics, 2010, 9, 3100-3100.	1.9	0
306	CS.2.3 CHOLANGIOCARCINOMA IN ITALY: A NATIONAL SURVEY ON DEMOGRAPHIC AND CLINICAL CHARACTERISTICS, DIAGNOSTIC MODALITIES AND TREATMENT. Digestive and Liver Disease, 2010, 42, S64-S65.	0.4	0

#	Article	IF	CITATIONS
307	CS.3.2 MULTIPOTENT STEM CELLS RESIDE IN HUMAN EXTRAHEPATIC BILE DUCTS AND CAN GIVE RISE TO HEPATOCYTES, CHOLANGIOCYTES AND PANCREATIC ISLET CELLS. Digestive and Liver Disease, 2010, 42, S66-S67.	0.4	0
308	OC.05.2 ESTROGEN RECEPTOR Î ² SELECTIVE AGONISTS EXERT ANTI-CANCER ACTIVITY ON EXPERIMENTAL INTRA-HEPATIC CHOLANGIOCARCINOMA: AN IN VITRO AND IN VIVO STUDY. Digestive and Liver Disease, 2010, 42, S81.	0.4	0
309	OC.05.8 PHARMACOLOGICAL INDUCTION OF PROSTATE APOPTOSIS RESPONSE 4 (PAR-4) PROMOTES APOPTOSIS OF CHOLANGIOCARCINOMA CELLS. Digestive and Liver Disease, 2010, 42, S83.	0.4	0
310	P.111 SUCCESSFUL ISOLATION, CULTURING AND DIFFERENTATION OF HEPATIC PROGENITOR CELLS (HPC) FROM HUMAN FOETAL LIVERS. Digestive and Liver Disease, 2010, 42, S142.	0.4	0
311	4 SUCCESSFUL ISOLATION, CULTURING AND DIFFERENTATION OF HEPATIC PROGENITOR CELLS (HPC) FROM HUMAN FOETAL LIVERS. Digestive and Liver Disease, 2010, 42, S2.	0.4	0
312	14 ESTROGEN RECEPTOR Î ² SELECTIVE AGONISTS EXERT ANTI-CANCER ACTIVITY ON EXPERIMENTAL INTRA-HEPATIC CHOLANGIOCARCINOMA: AN IN VITRO AND IN VIVO STUDY. Digestive and Liver Disease, 2010, 42, S6.	0.4	0
313	33 CHOLANGIOCARCINOMA IN ITALY: A NATIONAL SURVEY ON DEMOGRAPHIC AND CLINICAL CHARACTERISTICS, DIAGNOSTIC MODALITIES AND TREATMENT. Digestive and Liver Disease, 2010, 42, S13-S14.	0.4	0
314	T.N.2 PHARMACOLOGICAL INDUCTION OF PROSTATE APOPTOSIS RESPONSE 4 (PAR-4) PROMOTES APOPTOSIS OF CHOLANGIOCARCINOMA CELLS. Digestive and Liver Disease, 2010, 42, S15.	0.4	0
315	F.N.1 MULTIPOTENT STEM CELLS RESIDE IN HUMAN EXTRAHEPATIC BILE DUCTS (hEHBDs) AND CAN GIVE RISE TO HEPATOCYTES, CHOLANGIOCYTES AND PANCREATIC ISLET CELLS. Digestive and Liver Disease, 2010, 42, S33.	0.4	0
316	OC2 An estrogen receptor Î ² selective agonist exerts specific pro-apoptotic effects and promotes tumor regression in a rat model of intra-hepatic cholangiocarcinoma. Digestive and Liver Disease, 2010, 42, S311-S312.	0.4	0
317	OC4 Successful isolation, culturing and in vivo differentiation of hepatic progenitor cells isolated from human foetal liver. Digestive and Liver Disease, 2010, 42, S312.	0.4	0
318	OC6 In vitro and in vivo demonstration of multipotent cells isolated from human extrahepatic bile ducts (hEHBDs). Digestive and Liver Disease, 2010, 42, S313.	0.4	0
319	OC9 Isolation, culturing and differentiation of multipotent stem cells from human foetal biliary tree. Digestive and Liver Disease, 2010, 42, S314.	0.4	0
320	OC12 Candidate stem cell niches in the peribiliary glands (PBGs) of human extra hepatic bile ducts (hEHBDs). Digestive and Liver Disease, 2010, 42, S315.	0.4	0
321	44 SUCCESFUL ISOLATION, CULTURING AND DIFFERENTATION OF HEPATIC PROGENITOR CELLS (HPC) FROM HUMAN FOETAL LIVERS. Journal of Hepatology, 2010, 52, S19.	1.8	0
322	547 CHOLANGIOCARCINOMA IN ITALY: A NATIONAL SURVEY ON DEMOGRAPHIC AND CLINICAL CHARACTERISTICS, DIAGNOSTIC MODALITIES AND TREATMENT. Journal of Hepatology, 2010, 52, S218-S219.	1.8	0
323	880 ESTROGEN RECEPTOR Î ² SELECTIVE AGONISTS EXERT ANTI-CANCER ACTIVITY ON EXPERIMENTAL INTRA-HEPATIC CHOLANGIOCARCINOMA: AN IN VITRO AND IN VIVO STUDY. Journal of Hepatology, 2010, 52, S343.	1.8	0
324	968 PHARMACOLOGICAL INDUCTION OF PROSTATE APOPTOSIS RESPONSE 4 (PAR-4) PROMOTES APOPTOSIS OF CHOLANGIOCARCINOMA CELLS. Journal of Hepatology, 2010, 52, S374.	1.8	0

#	Article	IF	CITATIONS
325	In Situ, In Vitro and In Vivo Demonstration of Multipotent Stem Cells (MPS) in Human Adult Extrahepatic Bile Ducts (hEHBDs). Gastroenterology, 2011, 140, S-889.	0.6	0
326	P.1.4: AN ESTROGEN RECEPTOR-Î ² SELECTIVE AGONIST EXERTS SPECIFIC PRO-APOPTOTIC EFFECTS AND PROMOTES TUMOR REGRESSION IN A RAT MODEL OF INTRA-HEPATIC CHOLANGIOCARCINOMA. Digestive and Liver Disease, 2011, 43, S149.	0.4	0
327	Melatonin Inhibits In Vivo Cholangiocarcinoma Growth by Enhanced Biliary Expression of Serotonin N-Acetyltransferase (AANAT) the Key Enzyme Involved in Melatonin Synthesis. Gastroenterology, 2011, 140, S-910.	0.6	0
328	Successful Isolation, Culturing and Differentiation In Vitro and In Vivo of Multipotent Stem Cells (Mps) From Human Fetal Biliary Tree. Gastroenterology, 2011, 140, S-889.	0.6	0
329	49 SUCCESSFUL ISOLATION, CULTURING AND DIFFERENTIATION IN VITRO AND IN VIVO OF MULTIPOTENT STEM CELLS (MPS) FROM HUMAN FETAL BILIARY TREE. Journal of Hepatology, 2011, 54, S22.	1.8	0
330	238 AN ESTROGEN RECEPTOR ß SELECTIVE AGONIST EXERTS SPECIFIC PRO-APOPTOTIC EFFECTS AND PROMOTES TUMOR REGRESSION IN A RAT MODEL OF INTRA-HEPATIC CHOLANGIOCARCINOMA. Journal of Hepatology, 2011, 54, S99.	1.8	0
331	686 IN SITU, IN VITRO AND IN VIVO AND DEMONSTRATION OF MULTIPOTENT STEM CELLS (MPS) IN HUMAN ADULT EXTRAHEPATIC BILE DUCTS (HEHBDS). Journal of Hepatology, 2011, 54, S276.	1.8	0
332	699 SUCCESSFUL ISOLATION, CULTURING AND DIFFERENTIATION IN VITRO AND IN VIVO OF MULTIPOTENT STEM CELLS (MPS) FROM HUMAN FETAL BILIARY TREE. Journal of Hepatology, 2011, 54, S280-S281.	1.8	0
333	49 GALLBLADDER IS A HIGHLY AVAILABLE SOURCE OF STEM CELLS WITH MULTIPLE ENDODERMIC MATURE FATES POTENTIALITY. Journal of Hepatology, 2012, 56, S22.	1.8	0
334	OC.09.6 HUMAN ADULT LIVER STEM CELLS ARE EFFICIENTLY REPROGRAMMED TO FUNCTIONAL B-PANCREATIC ISLET CELLS, SECRETING INSULIN, BY A NEWLY SYNTHESIZED HUMAN PDX1 PEPTIDE. Digestive and Liver Disease, 2014, 46, S23.	0.4	0
335	P103 SUCCESSFUL CRYOPRESERVATION OF HUMAN BILIARY TREE STEM/PROGENITOR CELLS (hbTSCS) ISOLATED FROM ADULT LIVER BASED ON GOOD MANUFACTURING PRACTICE. Journal of Hepatology, 2014, 60, S100-S101.	1.8	0
336	P106 ADULT HUMAN BILIARY TREE STEM/PROGENITOR CELLS (hbtscs) ARE EFFICIENTLY REPROGRAMMED TO FUNCTIONAL INSULIN-SECRETING Î2-PANCREATIC ISLET CELLS BY A NEWLY SYNTHESIZED HUMAN Pdx1 PEPTIDE. Journal of Hepatology, 2014, 60, S101-S102.	1.8	0
337	OC.19.3 HUMAN CHOLANGIOCARCINOMA (CCA) AND CCA CANCER STEM CELLS (CSCS) ARE HIGHLY SENSITIVE TO THE ANTIPROLIFERATIVE EFFECTS OF PI3-KINASE INHIBITORS. Digestive and Liver Disease, 2014, 46, S41.	0.4	0
338	Transplantation of stem/progenitor cells isolated from human fetal biliary tree into two patients with advanced liver cirrhosis. Digestive and Liver Disease, 2014, 46, e139-e140.	0.4	0
339	Tumorigenic potential of cancer stem cells (CSCs) isolated from human cholangiocarcinoma (CCA) subtypes in cirrhotic liver. Digestive and Liver Disease, 2014, 46, e133.	0.4	0
340	Adult human biliary tree stem cells (hBTSCs) are efficiently reprogrammed to functional insulin-secreting l²-pancreatic islet cells by a newly synthesized human Pdx1 peptide. Digestive and Liver Disease, 2014, 46, e4.	0.4	0
341	Human biliary tree stem/progenitor cells (hBTSCs) from peribiliary glands (PBGs) of adult liver display immunomodulatory properties through Fas/Fas ligand induced T-cell lymphocyte apoptosis. Digestive and Liver Disease, 2014, 46, e30.	0.4	0
342	P.01.9 SUCCESSFUL CRYOPRESERVATION OF HUMAN BILIARY TREE STEM/PROGENITOR CELLS (HBTSCS) ISOLATED FROM ADULT LIVER BASED ON GOOD MANUFACTURING PRACTICE (GMP). Digestive and Liver Disease, 2014, 46, S55.	0.4	0

#	Article	IF	CITATIONS
343	OC.16.5 HUMAN BILIARY TREE STEM/PROGENITOR CELLS (HBTSCS) FROM ADULT LIVER POSSESS IMMUNOMODULATORY PROPERTIES THROUGH FAS/FAS LIGAND INDUCED T-CELL APOPTOSIS. Digestive and Liver Disease, 2014, 46, S36.	0.4	0
344	P44 TUMORIGENIC POTENTIAL OF CANCER STEM CELLS (CSCS) ISOLATED FROM HUMAN CHOLANGIOCARCINOMA (CCA) SUBTYPES. Journal of Hepatology, 2014, 60, S81.	1.8	0
345	OC.19.5 TUMORIGENIC POTENTIAL OF CANCER STEM CELLS (CSCS) ISOLATED FROM HUMAN CHOLANGIOCARCINOMA (CCA) SUBTYPES. Digestive and Liver Disease, 2014, 46, S42.	0.4	0
346	P107 HUMAN BILIARY TREE STEM/PROGENITOR CELLS (hbTSCS) FROM PERIBILIARY GLANDS (PBGS) OF ADULT LIVER DISPLAY IMMUNOMODULATORY PROPERTIES THROUGH Fas/Fas LIGAND INDUCED T-CELL LYMPHOCYTE APOPTOSIS. Journal of Hepatology, 2014, 60, S102.	1.8	0
347	Human cholangiocarcinoma (CCA) and CCA cancer stem cells (CSCs) are highly sensitive to the antiproliferative effects of PI3-kinase inhibitors. Digestive and Liver Disease, 2014, 46, e2.	0.4	0
348	Tumorigenic potential of cancer stem cells (CSCs) isolated from human cholangiocarcinoma (CCA) subtypes. Digestive and Liver Disease, 2014, 46, e57.	0.4	0
349	P58 HUMAN CHOLANGIOCARCINOMA (CCA) AND CCA CANCER STEM CELLS (CSCS) ARE HIGHLY SENSITIVE TO THE ANTIPROLIFERATIVE EFFECTS OF PI3-KINASE INHIBITORS. Journal of Hepatology, 2014, 60, S86.	1.8	0
350	P1145 : Activation and epithelial-to-mesenchymal transition of biliary tree stem cells within peribiliary glands are involved in the pathogenesis of primary sclerosing cholangitis. Journal of Hepatology, 2015, 62, S781.	1.8	0
351	LP46 : Occult HBV is highly prevalent in patients with intrahepatic cholangiocarcinoma and it is detected as both free episomal and integrated DNA. Journal of Hepatology, 2015, 62, S286-S287.	1.8	0
352	P0239 : Tumorigenic potential of Cancer Stem Cells (CSCs) isolated from human cholangiocarcinoma (CCA) subtypes in cirrhotic microenvironment. Journal of Hepatology, 2015, 62, S396.	1.8	0
353	Biliary Tree and Peribiliary Glands as a Niche of Extra-Pancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes. Journal of Hepatology, 2016, 64, S346.	1.8	0
354	PC.01.4 PERIBILIARY GLANDS AS A NICHE OF EXTRA-PANCREATIC INSULIN-PRODUCING AND GLUCOSE-SENSITIVE CELLS. Digestive and Liver Disease, 2016, 48, e69.	0.4	0
355	The Staging of Gastritis with the Olga System in the Italian Setting: Histological Features and Gastric Cancer Risk. Gastroenterology, 2017, 152, S473.	0.6	0
356	Metformin reduces cell migration and down-regulates epithelial to mesenchymal transition by AMPK / Foxo3a pathway in human intrahepatic cholangiocarcinoma. Journal of Hepatology, 2017, 66, S636.	1.8	0
357	A new strategy to improve the liver engraftment efficiency of transplanted human biliary tree stem/progenitor cells (hBTSCs): Cell coating with hyaluronic acid. Digestive and Liver Disease, 2017, 49, e11.	0.4	0
358	Metformin reduces cell migration and down-regulates epithelial to mesenchymal transition (EMT) by AMPK/Foxo3a pathway in human intrahepatic cholangiocarcinoma (CCA). Digestive and Liver Disease, 2017, 49, e13.	0.4	0
359	A new strategy to improve the liver engraftment efficiency of transplanted human biliary tree stem/progenitor cells: cell coating with hyaluronic acid. Journal of Hepatology, 2017, 66, S42.	1.8	0
360	OC.13.2: Epidemiology of Primary Biliary Cholangitis: Evidence from a Real World Database. Digestive and Liver Disease, 2017, 49, e112-e113.	0.4	0

#	Article	IF	CITATIONS
361	OC.13.3: Metformin Inhibits Proliferation, Enhances Apoptosis and Down-Regulates Epithelial to Mesenchymal Transition (EMT) in Human Cholangiocarcinoma (CCA): A Study on Human Primary Cell Cultures. Digestive and Liver Disease, 2017, 49, e113.	0.4	0
362	P.10.2: Hyaluronic Acid Improves the Engraftment Efficiency of Human Biliary Tree Stem/Progenitor Cells (HBTSCS). Digestive and Liver Disease, 2017, 49, e195-e196.	0.4	0
363	P.10.4: The Differentiation and Metabolism of Human Hepatic and Biliary Tree Stem/Progenitor Cells can be Significantly Modulated by Microgravity. Digestive and Liver Disease, 2017, 49, e196-e197.	0.4	0
364	Knockout of the Secretin Receptor (SR) in Experimental Primary Sclerosing Cholangitis Reduces Biliary Hyperplasia and Liver Fibrois through Decreased Expression of Epithelial-Mesenchymal Transitions (EMT) Traits and Cellular Senescence in Cholangiocytes. Gastroenterology, 2017, 152, S1155.	0.6	0
365	Simulated microgravity significantly impacts the differentiation and metabolism of human hepatic and biliary tree stem/progenitor cells. Journal of Hepatology, 2017, 66, S203.	1.8	0
366	Establishment of expanding 3D-organoids cultures from human fetal biliary tree stem cells (hBTSCs) as a potential tool for regenerative medicine and disease modeling. Digestive and Liver Disease, 2018, 50, 25.	0.4	0
367	Specific human cholangiocarcinoma (CCA) subpopulations of cancer stem cells (CSCs) express DoubleCortin-Like Kinase 1 (DCLK1) and DCLK1 inhibition induces anti-cancer effects. Digestive and Liver Disease, 2018, 50, 5-6.	0.4	0
368	The exposure of primary cultures of human biliary tree stem/progenitor cells (hBTSCs) to different micro-environmental factors induces proliferation, epithelial-mesenchymal transition (EMT) and senescence, which are typical pathological features of human cholangiopathies. Digestive and Liver Disease, 2018, 50, 30.	0.4	0
369	Different micro-environtmental factors induce proliferation, epithelial-mesenchymal transition (EMT) and senescence of primary cultures of human biliary tree stem/progenitor cells (hBTSCs), recapitulating the pathological features typical of human cholangiopathies. Journal of Hepatology, 2018, 68, S124-S125.	1.8	0
370	The cancerogenic potential of primary human Cholangioracinoma cells is inhibited by Obeticholic Acid, a Farnesoid X Receptor (FXR) agonist. Digestive and Liver Disease, 2018, 50, 22-23.	0.4	0
371	Primary Biliary Cholangitis (PBC): The emotional perception of the disease journey from a patient's perspective. Digestive and Liver Disease, 2018, 50, 57.	0.4	0
372	Development of self-renewing 3D organoid culture from human fetal biliary tree stem cells (hBTSCs) as a potential system for regenerative medicine and disease modelling. Journal of Hepatology, 2018, 68, S55-S56.	1.8	0
373	Obeticholic acid, a FXR agonist, inhibits the cancerogenic potential of primary human cholangiocarcinoma (CCA) cells cultures. Journal of Hepatology, 2018, 68, S677-S679.	1.8	0
374	Peribiliary glands and biliary tree stem cells are involved in the pathogenesis of cholangiocarcinoma arising in patients affected by primary sclerosing cholangitis. Journal of Hepatology, 2018, 68, S674.	1.8	0
375	P.01.21 GASTROESOPHAGEAL REFLUX DISEASE IN OBESE PATIENTS WHO ARE CANDIDATE TO BARIATRIC SURGERY. Digestive and Liver Disease, 2019, 51, e142.	0.4	0
376	PC.01.6 HUMAN DUODENAL SUBMUCOSAL GLANDS CONTAIN STEM CELLS WITH POTENTIAL FOR LIVER AND PANCREATIC FATES. Digestive and Liver Disease, 2019, 51, e73-e74.	0.4	0
377	PS-123-Biliary tree stem/progenitor cells mediate the regeneration in biliary lining after injury. Journal of Hepatology, 2019, 70, e76-e77.	1.8	0
378	Human duodenal submucosal glands contain stem cells with potential for liver and pancreatic regenerative medicine. Digestive and Liver Disease, 2019, 51, e3.	0.4	0

#	Article	IF	CITATIONS
379	FRI-011-Ductular reaction, intermediate hepatocites and fibrosis extension correlate with prediction of treatment failure to ursodeoxycholic acid in primary biliary cholangitis. Journal of Hepatology, 2019, 70, e387-e388.	1.8	0
380	OC.01.1 BILIARY TREE STEM CELLS PLAY A KEY ROLE IN THE REGENERATION OF BILIARY EPITHELIUM AFTER INJURY. Digestive and Liver Disease, 2019, 51, e77.	0.4	0
381	Ductular reaction, intermediate hepatocytes and fibrosis extension correlate with prediction of treatment failure to ursodeoxycholic acid in primary biliary cholangitis. Digestive and Liver Disease, 2019, 51, e1.	0.4	0
382	Pancreas progenitors. , 2020, , 347-357.		0
383	Secretin Treatment Promotes Hepatic Progenitor Cell Activation, Ductalâ€Canalicular Junction Formation and Amelioration of Liver Damage in a Model of Lateâ€Stage Primary Biliary Cholangitis. FASEB Journal, 2021, 35, .	0.2	0
384	An isolate alpha-fetoprotein producing gastric cancer liver metastasis emerged in a patient previously affected by radiation induced liver disease. World Journal of Hepatology, 2013, 5, 398.	0.8	0
385	Molecular Profiling. Medical Radiology, 2014, , 99-115.	0.0	0
386	Brefeldin A (BFA) inhibits transcytosis in the isolated perfused rat liver (IPRL) with no effect on bile flow and bile salt secretion. Hepatology, 1993, 18, A294.	3.6	0
387	Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Delivery and Translational Research, 2022, , 1.	3.0	0