
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898663/publications.pdf Version: 2024-02-01

Seid Μλημι Ιλελαι

#	Article	IF	CITATIONS
1	Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology, 2008, 26, 816-835.	3.1	818
2	Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 2008, 22, 1191-1202.	10.7	634
3	Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science, 2018, 251, 55-79.	14.7	631
4	Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 2016, 85, 467-475.	7.5	532
5	Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. International Journal of Food Properties, 2006, 9, 475-485.	3.0	466
6	Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 2007, 82, 478-488.	5.2	425
7	The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science and Technology, 2017, 62, 119-132.	15.1	424
8	Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 2016, 146, 532-543.	5.0	419
9	Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science and Technology, 2016, 53, 34-48.	15.1	409
10	Nano-particle encapsulation of fish oil by spray drying. Food Research International, 2008, 41, 172-183.	6.2	399
11	Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 2017, 216, 146-152.	8.2	393
12	Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 2016, 85, 379-385.	7.5	371
13	Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 2019, 88, 146-162.	10.7	347
14	Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 2018, 44, 161-181.	6.1	341
15	Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydrate Polymers, 2020, 236, 116075.	10.2	322
16	Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology, 2015, 52, 1272-1282.	2.8	314
17	Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids and Surfaces B: Biointerfaces, 2019, 177, 25-32.	5.0	313
18	Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science and Technology, 2018, 74, 132-146.	15.1	309

#	Article	IF	CITATIONS
19	A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition, 2019, 59, 3129-3151.	10.3	307
20	Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 2017, 10, 413-433.	4.7	301
21	Spray-Drying Microencapsulation of Anthocyanins by Natural Biopolymers: A Review. Drying Technology, 2014, 32, 509-518.	3.1	298
22	Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science and Technology, 2018, 76, 56-66.	15.1	298
23	Optimization of nano-emulsions production by microfluidization. European Food Research and Technology, 2007, 225, 733-741.	3.3	267
24	Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science and Technology, 2017, 70, 69-81.	15.1	267
25	Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics, 2018, 546, 194-214.	5.2	265
26	Recovery and Removal of Phenolic Compounds from Olive Mill Wastewater. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1-18.	1.9	249
27	Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 2014, 105, 57-62.	10.2	248
28	Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 2014, 109, 148-154.	10.2	245
29	Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control, 2020, 112, 107086.	5.5	242
30	Nanotechnology Approaches for Increasing Nutrient Bioavailability. Advances in Food and Nutrition Research, 2017, 81, 1-30.	3.0	233
31	Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends in Food Science and Technology, 2017, 68, 14-25.	15.1	233
32	Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annual Review of Food Science and Technology, 2019, 10, 103-131.	9.9	233
33	Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 2016, 190, 513-519.	8.2	231
34	Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 2015, 165, 149-155.	5.2	210
35	pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science and Technology, 2020, 105, 93-144.	15.1	207
36	Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 2019, 298, 38-67.	9.9	205

#	Article	IF	CITATIONS
37	Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Advances in Colloid and Interface Science, 2020, 284, 102250.	14.7	198
38	Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 2015, 51, 327-337.	10.7	195
39	Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends in Food Science and Technology, 2015, 42, 150-172.	15.1	191
40	Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules, 2016, 82, 816-822.	7.5	188
41	Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 2021, 291, 102405.	14.7	182
42	Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science, 2020, 278, 102140.	14.7	178
43	Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science and Technology, 2020, 100, 262-277.	15.1	175
44	Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids, 2018, 77, 152-162.	10.7	174
45	Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 2017, 311, 59-65.	4.2	173
46	Encapsulation of Nanoparticles of d-Limonene by Spray Drying: Role of Emulsifiers and Emulsifying Techniques. Drying Technology, 2007, 25, 1069-1079.	3.1	165
47	Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 2019, 59, 3468-3497.	10.3	161
48	Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 954-994.	11.7	159
49	Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydrate Polymers, 2017, 177, 369-377.	10.2	158
50	Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. International Journal of Biological Macromolecules, 2017, 95, 238-247.	7.5	158
51	Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science, 2020, 275, 102048.	14.7	155
52	A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. Nano-Micro Letters, 2020, 12, 73.	27.0	152
53	Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydrate Polymers, 2014, 105, 222-228.	10.2	150
54	Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chemistry, 2017, 221, 1962-1969.	8.2	150

#	Article	IF	CITATIONS
55	Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends in Food Science and Technology, 2019, 91, 116-128.	15.1	150
56	Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends in Food Science and Technology, 2019, 88, 445-458.	15.1	148
57	Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocolloids, 2017, 66, 259-267.	10.7	146
58	Rheological behavior and stability of d-limonene emulsions made by a novel hydrocolloid (Angum) Tj ETQq0 0 0 r	gBT /Overl 5.2	ock 10 Tf 50 141
59	Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 2019, 269, 277-295.	14.7	134
60	Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science and Technology, 2019, 88, 397-415.	15.1	131
61	A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Critical Reviews in Food Science and Nutrition, 2022, 62, 1383-1416.	10.3	131
62	Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids, 2020, 105, 105774.	10.7	131
63	Storage stability of encapsulated barberry's anthocyanin and its application in jelly formulation. Journal of Food Engineering, 2016, 181, 59-66.	5.2	130

64	Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. Journal of Agricultural and Food Chemistry, 2018, 66, 9231-9240.	5.2	130
65	Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids, 2019, 97, 105170.	10.7	129
66	Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by <i>in vitro</i> methods. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2862-2884.	11.7	124
67	Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydrate Polymers, 2015, 118, 24-29.	10.2	122
68	Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. International Journal of Biological Macromolecules, 2018, 120, 1216-1224.	7.5	122
69	Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocolloids, 2019, 96, 442-450.	10.7	120
70	Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 2020, 132, 109077.	6.2	120
71	Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends in Food Science and Technology, 2022, 120, 154-173	15.1	120

Preparation and characterization of nano-SiO2 reinforced gelatin-k-carrageenan biocomposites.
International Journal of Biological Macromolecules, 2018, 111, 1091-1099.

#	Article	IF	CITATIONS
73	Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science and Technology, 2020, 101, 106-121.	15.1	118
74	The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT - Food Science and Technology, 2014, 56, 124-130.	5.2	115
75	Main chemical compounds and pharmacological activities of stigmas and tepals of â€~red gold'; saffron. Trends in Food Science and Technology, 2016, 58, 69-78.	15.1	115
76	Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloids and Surfaces B: Biointerfaces, 2019, 178, 421-429.	5.0	113
77	Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules, 2016, 86, 197-207.	7.5	112
78	Soluble soybean polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging. Carbohydrate Polymers, 2013, 97, 817-824.	10.2	111
79	Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. International Journal of Biological Macromolecules, 2016, 84, 261-267.	7.5	111
80	Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chemistry, 2017, 229, 286-295.	8.2	110
81	Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science and Technology, 2019, 89, 26-44.	15.1	109
82	Application of image processing to assess emulsion stability and emulsification properties of Arabic gum. Carbohydrate Polymers, 2015, 126, 1-8.	10.2	107
83	Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends in Food Science and Technology, 2019, 91, 248-261.	15.1	107
84	Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3-47.	11.7	107
85	Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Advances in Colloid and Interface Science, 2020, 278, 102125.	14.7	106
86	Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends in Food Science and Technology, 2018, 78, 206-223.	15.1	105
87	Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 2019, 140, 59-68.	7.5	105
88	Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123644.	4.7	104
89	Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 2019, 270, 123-146.	14.7	98
90	Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2021, 2, 109-139.	7.4	98

#	Article	IF	CITATIONS
91	Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends in Food Science and Technology, 2019, 94, 20-31.	15.1	96
92	Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. LWT - Food Science and Technology, 2020, 134, 110133.	5.2	96
93	Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science and Technology, 2020, 100, 190-209.	15.1	96
94	Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends in Food Science and Technology, 2021, 116, 218-231.	15.1	96
95	Optimization of Ultrasound-Assisted Extraction of Oil from Canola Seeds with the Use of Response Surface Methodology. Food Analytical Methods, 2018, 11, 598-612.	2.6	95
96	Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties. Journal of Food Engineering, 2018, 237, 86-95.	5.2	95
97	Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International, 2007, 40, 862-873.	6.2	94
98	Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties. Food Chemistry, 2014, 160, 90-97.	8.2	93
99	The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds' oil. Industrial Crops and Products, 2017, 97, 1-9.	5.2	92
100	Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends in Food Science and Technology, 2020, 95, 59-74.	15.1	92
101	Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering, 2019, 245, 139-148.	5.2	90
102	Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management. Advances in Colloid and Interface Science, 2020, 283, 102226.	14.7	90
103	Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Critical Reviews in Food Science and Nutrition, 2021, 61, 2640-2658.	10.3	90
104	Impact of Wall Materials on Physicochemical Properties of Microencapsulated Fish Oil by Spray Drying. Food and Bioprocess Technology, 2014, 7, 2354-2365.	4.7	89
105	Influence of drying on functional properties of food biopolymers: From traditional to novel dehydration techniques. Trends in Food Science and Technology, 2016, 57, 116-131.	15.1	89
106	Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics, 2021, 13, 291.	4.5	89
107	Role of Powder Particle Size on the Encapsulation Efficiency of Oils during Spray Drying. Drying Technology, 2007, 25, 1081-1089.	3.1	88
108	Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 2016, 140, 20-25.	10.2	86

#	Article	IF	CITATIONS
109	Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. Trends in Food Science and Technology, 2019, 88, 468-483.	15.1	86
110	Bioactive-loaded nanocarriers for functional foods: from designing to bioavailability. Current Opinion in Food Science, 2020, 33, 21-29.	8.0	85
111	Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydrate Polymers, 2021, 272, 118464.	10.2	85
112	Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Advances in Colloid and Interface Science, 2019, 270, 263-277.	14.7	84
113	Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydrate Polymers, 2019, 225, 115220.	10.2	84
114	Evaluation of Folic Acid Nano-encapsulation by Double Emulsions. Food and Bioprocess Technology, 2016, 9, 2024-2032.	4.7	83
115	Optimization of Anthocyanin Extraction from Saffron Petals with Response Surface Methodology. Food Analytical Methods, 2016, 9, 1993-2001.	2.6	82
116	Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology, 2020, 38, 577-595.	3.1	81
117	Fortification of yogurt with flaxseed powder and evaluation of its fatty acid profile, physicochemical, antioxidant, and sensory properties. Powder Technology, 2020, 359, 76-84.	4.2	80
118	Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. International Journal of Biological Macromolecules, 2021, 193, 528-540.	7.5	80
119	Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 2020, 280, 102164.	14.7	79
120	Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Food Chemistry, 2020, 310, 125951.	8.2	78
121	Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrasonics Sonochemistry, 2019, 50, 208-217.	8.2	77
122	Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 2021, 108, 297-325.	15.1	77
123	Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocolloids, 2019, 89, 44-55.	10.7	76
124	Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in Food Science and Technology, 2020, 102, 71-90.	15.1	76
125	The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Research International, 2017, 96, 19-26.	6.2	75
126	Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science, 2020, 278, 102122.	14.7	75

#	Article	IF	CITATIONS
127	Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends in Food Science and Technology, 2020, 96, 61-78.	15.1	74
128	Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends in Food Science and Technology, 2020, 98, 117-128.	15.1	73
129	Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocolloids, 2020, 101, 105572.	10.7	72
130	Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry, 2021, 359, 129965.	8.2	71
131	Spray drying of folic acid within nano-emulsions: Optimization by Taguchi approach. Drying Technology, 2017, 35, 1152-1160.	3.1	70
132	Drug nanodelivery systems based on natural polysaccharides against different diseases. Advances in Colloid and Interface Science, 2020, 284, 102251.	14.7	70
133	Application of nano/microencapsulated phenolic compounds against cancer. Advances in Colloid and Interface Science, 2020, 279, 102153.	14.7	70
134	Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2885-2931.	11.7	69
135	Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science, 2020, 280, 102166.	14.7	69
136	<p>Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges</p> . International Journal of Nanomedicine, 2019, Volume 14, 4589-4599.	6.7	68
137	Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications. Journal of Controlled Release, 2019, 303, 302-318.	9.9	67
138	Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocolloids, 2019, 90, 291-298.	10.7	67
139	A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends in Food Science and Technology, 2021, 109, 303-321.	15.1	65
140	Oxidative Stability of Spray-Dried Microencapsulated Fish Oils with Different Wall Materials. Journal of Aquatic Food Product Technology, 2014, 23, 567-578.	1.4	64
141	Comparing Quality Characteristics of Oven-Dried and Refractance Window-Dried Kiwifruits. Journal of Food Processing and Preservation, 2016, 40, 362-372.	2.0	63
142	Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Advances in Colloid and Interface Science, 2020, 282, 102210.	14.7	63
143	Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International, 2021, 142, 110186.	6.2	63
144	Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. International Journal of Biological Macromolecules, 2021, 193, 2320-2331.	7.5	63

#	Article	IF	CITATIONS
145	Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion. Journal of Food Processing and Preservation, 2016, 40, 329-339.	2.0	62
146	Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. International Journal of Biological Macromolecules, 2017, 105, 281-291.	7.5	62
147	Evaluation of microwave-assisted extraction technology for separation of bioactive components of saffron (Crocus sativus L.). Industrial Crops and Products, 2020, 145, 111978.	5.2	62
148	Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Advances in Colloid and Interface Science, 2021, 292, 102416.	14.7	62
149	Protection of phenolic compounds within nanocarriers CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-8.	1.0	62
150	Emulsification properties of a novel hydrocolloid (Angum gum) for d-limonene droplets compared with Arabic gum. International Journal of Biological Macromolecules, 2013, 61, 182-188.	7.5	61
151	Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition, 2021, 61, 522-534.	10.3	61
152	Recent developments on new formulations based on nutrient-dense ingredients for the production of healthy-functional bread: a review. Journal of Food Science and Technology, 2014, 51, 2896-2906.	2.8	59
153	Extraction Optimization of Saffron Nutraceuticals Through Response Surface Methodology. Food Analytical Methods, 2015, 8, 2273-2285.	2.6	58
154	Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596, 124746.	4.7	58
155	Nano spray drying of food ingredients; materials, processing and applications. Trends in Food Science and Technology, 2021, 109, 632-646.	15.1	58
156	Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Advances in Colloid and Interface Science, 2021, 293, 102440.	14.7	58
157	Innovations in spray drying process for food and pharma industries. Journal of Food Engineering, 2022, 321, 110960.	5.2	58
158	Effects of high voltage electric field thawing on the characteristics of chicken breast protein. Journal of Food Engineering, 2018, 216, 98-106.	5.2	57
159	Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol. Carbohydrate Polymers, 2020, 235, 115979.	10.2	56
160	Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry, 2021, 364, 130376.	8.2	56
161	Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing, 2016, 97, 12-19.	3.6	55
162	Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 2021, 40, 100857.	4.4	53

#	Article	IF	CITATIONS
163	Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environmental Science and Pollution Research, 2018, 25, 21742-21751.	5.3	52
164	General Aspects of Nanoemulsions and Their Formulation. , 2018, , 3-20.		52
165	Production of a natural color through microwaveâ€assisted extraction of saffron tepal's anthocyanins. Food Science and Nutrition, 2019, 7, 1438-1445.	3.4	52
166	Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Advances in Colloid and Interface Science, 2020, 286, 102297.	14.7	52
167	Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 2022, 62, 2470-2494.	10.3	52
168	Mathematical and fuzzy modeling of limonene release from amylose nanostructures and evaluation of its release kinetics. Food Hydrocolloids, 2019, 95, 186-194.	10.7	51
169	Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. Journal of Controlled Release, 2020, 321, 211-221.	9.9	50
170	Hydrophobicity, thermal and micro-structural properties of whey protein concentrate–pullulan–beeswax films. International Journal of Biological Macromolecules, 2015, 80, 506-511.	7.5	49
171	Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. International Journal of Biological Macromolecules, 2019, 137, 374-381.	7.5	49
172	Production of low fat french-fries with single and multi-layer hydrocolloid coatings. Journal of Food Science and Technology, 2014, 51, 1334-1341.	2.8	48
173	Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. International Journal of Biological Macromolecules, 2015, 79, 669-673.	7.5	48
174	Effect of ultrasonication, pH and heating on stability of apricot gum–lactoglobuline two layer nanoemulsions. International Journal of Biological Macromolecules, 2015, 81, 1019-1025.	7.5	48
175	An overview of nanoencapsulation techniques and their classification. , 2017, , 1-34.		48
176	Production of a Functional Yogurt Powder Fortified with Nanoliposomal Vitamin D Through Spray Drying. Food and Bioprocess Technology, 2019, 12, 1220-1231.	4.7	48
177	Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering, 2019, 251, 19-28.	5.2	48
178	Fabrication and characterization of graphene oxide-chitosan-zinc oxide ternary nano-hybrids for the corrosion inhibition of mild steel. International Journal of Biological Macromolecules, 2020, 148, 1190-1200.	7.5	48
179	Phytosterols as the core or stabilizing agent in different nanocarriers. Trends in Food Science and Technology, 2020, 101, 73-88.	15.1	47
180	Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Advances in Colloid and Interface Science, 2022, 300, 102593.	14.7	47

#	Article	IF	CITATIONS
181	A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D ₃ . Drying Technology, 2019, 37, 2059-2071.	3.1	46
182	Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Critical Reviews in Food Science and Nutrition, 2022, 62, 1936-1950.	10.3	45
183	Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends in Food Science and Technology, 2020, 99, 217-228.	15.1	45
184	Mass Transfer Kinetics of Eggplant during Osmotic Dehydration by Neural Networks. Journal of Food Processing and Preservation, 2016, 40, 815-827.	2.0	44
185	Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends in Food Science and Technology, 2021, 107, 201-212.	15.1	44
186	Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice. Journal of Food Science and Technology, 2017, 54, 679-686.	2.8	43
187	Fabrication, characterization and stability of oil in water nano-emulsions produced by apricot gum-pectin complexes. International Journal of Biological Macromolecules, 2017, 103, 1285-1293.	7.5	43
188	Application of nanofluids for thermal processing of food products. Trends in Food Science and Technology, 2020, 97, 100-113.	15.1	43
189	Extraction and purification of d-limonene from orange peel wastes: Recent advances. Industrial Crops and Products, 2022, 177, 114484.	5.2	43
190	Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition, 2021, 61, 3031-3065.	10.3	42
191	Improving the oxidative stability of fish oil nanoemulsions by co-encapsulation with curcumin and resveratrol. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111481.	5.0	42
192	Fabrication and characterization of β-cypermethrin-loaded PLA microcapsules prepared by emulsion-solvent evaporation: loading and release properties. Environmental Science and Pollution Research, 2018, 25, 13525-13535.	5.3	41
193	Extraction of essential oils from Bunium persicum Boiss. using superheated water. Food and Bioproducts Processing, 2010, 88, 222-226.	3.6	40
194	Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends in Food Science and Technology, 2022, 123, 355-375.	15.1	40
195	The influence of nanocellulose coating on saffron quality during storage. Carbohydrate Polymers, 2018, 181, 536-542.	10.2	39
196	Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities. Ultrasonics Sonochemistry, 2019, 53, 110-119.	8.2	39
197	Evaluation of oxidative stability, fatty acid profile, and antioxidant properties of black cumin seed oil and extract. Journal of Food Measurement and Characterization, 2019, 13, 383-389.	3.2	39
198	Descriptive analysis of bacterial profile, physicochemical and sensory characteristics of grape juice containing <i>Saccharomyces cerevisiae</i> cell wallâ€coated probiotic microcapsules during storage. International Journal of Food Science and Technology, 2017, 52, 1042-1048.	2.7	38

#	Article	IF	CITATIONS
199	Development of an environmentally-friendly solvent-free extraction of saffron bioactives using subcritical water. LWT - Food Science and Technology, 2019, 114, 108428.	5.2	38
200	Influence of pectin-whey protein complexes and surfactant on the yield and microstructural properties of date powder produced by spray drying. Journal of Food Engineering, 2019, 242, 124-132.	5.2	38
201	Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modified starch. International Journal of Biological Macromolecules, 2020, 153, 697-707.	7.5	38
202	Microemulsions as nano-reactors for the solubilization, separation, purification and encapsulation of bioactive compounds. Advances in Colloid and Interface Science, 2020, 283, 102227.	14.7	37
203	Improving the antioxidant stability of flaxseed peptide fractions during spray drying encapsulation by surfactants: Physicochemical and morphological features. Journal of Food Engineering, 2020, 286, 110131.	5.2	37
204	The Influence of Refractance Window Drying on Qualitative Properties of Kiwifruit Slices. International Journal of Food Engineering, 2017, 13, .	1.5	36
205	Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Advances in Colloid and Interface Science, 2021, 290, 102384.	14.7	36
206	Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives. Food Hydrocolloids, 2022, 126, 107474.	10.7	36
207	Encapsulation by nanoemulsions. , 2017, , 36-73.		35
208	Evaluation of physical, rheological, microbial, and organoleptic properties of meat powder produced by Refractance Window drying. Drying Technology, 2018, 36, 1076-1085.	3.1	35
209	The Influence of Ohmic Heating on Degradation of Food Bioactive Ingredients. Food Engineering Reviews, 2020, 12, 191-208.	5.9	35
210	Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Advances in Colloid and Interface Science, 2022, 299, 102567.	14.7	35
211	The influence of cooking process on the microwave-assisted extraction of cottonseed oil. Journal of Food Science and Technology, 2015, 52, 1138-1144.	2.8	34
212	The influence of pulsed electric fields and microwave pretreatments on some selected physicochemical properties of oil extracted from black cumin seed. Food Science and Nutrition, 2018, 6, 111-118.	3.4	34
213	Changes in lycopene content and quality of tomato juice during thermal processing by a nanofluid heating medium. Journal of Food Engineering, 2018, 230, 1-7.	5.2	32
214	Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. Food and Bioprocess Technology, 2021, 14, 23-38.	4.7	32
215	The role of emulsification strategy on the electrospinning of β-carotene-loaded emulsions stabilized by gum Arabic and whey protein isolate. Food Chemistry, 2022, 374, 131826.	8.2	32
216	Different strategies to reinforce the milk protein-based packaging composites. Trends in Food Science and Technology, 2022, 123, 1-14.	15.1	32

#	Article	IF	CITATIONS
217	Heat Transfer Enhancement in Thermal Processing of Tomato Juice by Application of Nanofluids. Food and Bioprocess Technology, 2017, 10, 307-316.	4.7	31
218	The influence of bath and probe sonication on the physicochemical and microstructural properties of wheat starch. Food Science and Nutrition, 2019, 7, 2427-2435.	3.4	31
219	Experimental and molecular docking study of the binding interactions between bovine α-lactalbumin and oleuropein. Food Hydrocolloids, 2020, 105, 105859.	10.7	31
220	Production of d-limonene-loaded Pickering emulsions stabilized by chitosan nanoparticles. Food Chemistry, 2021, 354, 129591.	8.2	31
221	Protection and controlled release of vitamin C by different micro/nanocarriers. Critical Reviews in Food Science and Nutrition, 2022, 62, 3301-3322.	10.3	31
222	Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science and Technology, 2021, 118, 688-710.	15.1	31
223	Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocolloids, 2022, 124, 107280.	10.7	31
224	Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer. Journal of Food Quality, 2016, 39, 98-108.	2.6	30
225	Application of Nanoemulsions in Formulation of Pesticides. , 2018, , 379-413.		30
226	A Taguchi approach optimization of date powder production by spray drying with the aid of whey protein-pectin complexes. Powder Technology, 2020, 359, 85-93.	4.2	30
227	Spray dried nanoemulsions loaded with curcumin, resveratrol, and borage seed oil: The role of two different modified starches as encapsulating materials. International Journal of Biological Macromolecules, 2021, 186, 820-828.	7.5	30
228	Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacological Research, 2022, 178, 106164.	7.1	30
229	Arrhenius equation modeling for the shelf life prediction of tomato paste containing a natural preservative. Journal of the Science of Food and Agriculture, 2017, 97, 5216-5222.	3.5	29
230	Encapsulation of EPA and DHA concentrate from Kilka fish oil by milk proteins and evaluation of its oxidative stability. Journal of Food Science and Technology, 2019, 56, 59-70.	2.8	29
231	Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control, 2021, 128, 108180.	5.5	29
232	Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules, 2022, 27, 2076.	3.8	29
233	Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, 2020, 148, 31-40.	7.5	28
234	Formulation and Application of Nanoemulsions for Nutraceuticals and Phytochemicals. Current Medicinal Chemistry, 2020, 27, 3079-3095.	2.4	28

#	Article	IF	CITATIONS
235	Evaluation of Thin-Layer Drying Models and Artificial Neural Networks for Describing Drying Kinetics of Canola Seed in a Heat Pump Assisted Fluidized Bed Dryer. International Journal of Food Engineering, 2013, 9, 375-384.	1.5	27
236	Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties. Innovative Food Science and Emerging Technologies, 2017, 42, 173-179.	5.6	27
237	Production of omega-3 fatty acid-enriched broiler chicken meat by the application of nanoencapsultsed flaxseed oil prepared via ultrasonication. Journal of Functional Foods, 2019, 57, 373-381.	3.4	27
238	Postmarketing surveillance of the oxidative stability for cooking oils, frying oils, and vanaspati supplied in the retail market. Food Science and Nutrition, 2019, 7, 1455-1465.	3.4	26
239	Survival of encapsulated probiotics in pasteurized grape juice and evaluation of their properties during storage. Food Science and Technology International, 2019, 25, 120-129.	2.2	26
240	Evaluating the structural properties of bioactiveâ€loaded nanocarriers with modern analytical tools. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3266-3322.	11.7	26
241	Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Advances in Colloid and Interface Science, 2021, 295, 102504.	14.7	26
242	Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2022, 70, 1423-1437.	5.2	26
243	Nanodelivery systems for d-limonene; techniques and applications. Food Chemistry, 2022, 384, 132479.	8.2	26
244	Cycle life improvement of alkaline batteries via optimization of pulse current deposition of manganese dioxide under low bath temperatures. Journal of Power Sources, 2007, 163, 1091-1104.	7.8	25
245	Nanoencapsulation. , 2019, , 35-61.		25
246	Kinetics modelling of color deterioration during thermal processing of tomato paste with the use of response surface methodology. Heat and Mass Transfer, 2018, 54, 3663-3671.	2.1	24
247	Nanoliposomal encapsulation of Bitter Gourd (Momordica charantia) fruit extract as a rich source of health-promoting bioactive compounds. LWT - Food Science and Technology, 2019, 116, 108581.	5.2	23
248	A systematic review and meta-analysis of fish oil encapsulation within different micro/nanocarriers. Critical Reviews in Food Science and Nutrition, 2022, 62, 2061-2082.	10.3	23
249	Fractionation of Flaxseed-Derived Bioactive Peptides and Their Influence on Nanoliposomal Carriers. Journal of Agricultural and Food Chemistry, 2020, 68, 15097-15106.	5.2	23
250	Release of catechin from Azivash gum-polyvinyl alcohol electrospun nanofibers in simulated food and digestion media. Food Hydrocolloids, 2021, 112, 106366.	10.7	23
251	Barley-based probiotic food mixture: health effects and future prospects. Critical Reviews in Food Science and Nutrition, 2022, 62, 7961-7975.	10.3	23
252	Mechanical Behavior of Lentil Seeds in Relation to their Physicochemical and Microstructural Characteristics. International Journal of Food Properties, 2014, 17, 545-558.	3.0	22

#	Article	IF	CITATIONS
253	Refractanceâ€window as an innovative approach for the drying of saffron petals and stigma. Journal of Food Process Engineering, 2018, 41, e12863.	2.9	22
254	Encapsulation of rose essential oil using whey protein concentrate-pectin nanocomplexes: Optimization of the effective parameters. Food Chemistry, 2021, 356, 129731.	8.2	22
255	Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chemistry, 2022, 377, 131998.	8.2	22
256	Lycopene nanodelivery systems; recent advances. Trends in Food Science and Technology, 2022, 119, 378-399.	15.1	22
257	Formulation optimization and characterization of carvacrol-loaded nanoemulsions: In vitro antibacterial activity/mechanism and safety evaluation. Industrial Crops and Products, 2022, 181, 114816.	5.2	22
258	Effects of different drying techniques on the quality and bioactive compounds of plant-based products: a critical review on current trends. Drying Technology, 2022, 40, 1539-1561.	3.1	22
259	Development of ternary nanoadsorbent composites of graphene oxide, activated carbon, and zeroâ€valent iron nanoparticles for food applications. Food Science and Nutrition, 2019, 7, 2827-2835.	3.4	21
260	Effect of Different Drying Methods on the Physicochemical Properties and Bioactive Components of Saffron Powder. Plant Foods for Human Nutrition, 2019, 74, 171-178.	3.2	21
261	Novel complex coacervates based on Zedo gum, cress seed gum and gelatin for loading of natural anthocyanins. International Journal of Biological Macromolecules, 2020, 164, 3349-3360.	7.5	21
262	Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Research International, 2022, 157, 111212.	6.2	21
263	Optimization of Closed-Cycle Fluidized Bed Drying of Sesame Seeds Using Response Surface Methodology and Genetic Algorithms. International Journal of Food Engineering, 2013, 10, 167-181.	1.5	20
264	Neural networks modeling of <i>Aspergillus flavus</i> growth in tomato paste containing microencapsulated olive leaf extract. Journal of Food Safety, 2018, 38, e12396.	2.3	20
265	Proximate composition, mineral content, and fatty acids profile of two varieties of lentil seeds cultivated in Iran. Chemistry of Natural Compounds, 2012, 47, 976-978.	0.8	19
266	Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry. Physics in Medicine and Biology, 2014, 59, 6875-6889.	3.0	19
267	Production of <i>Trans</i> â€free fats by chemical interesterified blends of palm stearin and sunflower oil. Food Science and Nutrition, 2019, 7, 3722-3730.	3.4	19
268	Metal nanoparticles as antimicrobial agents in food packaging. , 2020, , 379-414.		19
269	Ultrasonic-assisted production of zero-valent iron-decorated graphene oxide/activated carbon nanocomposites: Chemical transformation and structural evolution. Materials Science and Engineering C, 2021, 118, 111362.	7.3	19
270	Phytochemical and Anti-oxidant Activity of Lavandula Angustifolia Mill. Essential oil on Preoperative Anxiety in Patients undergoing Diagnostic Curettage. International Journal of Women's Health and Reproduction Sciences, 2014, 2, 268-271.	0.4	19

#	Article	IF	CITATIONS
271	Preparation of Lycopene Emulsions by Whey Protein Concentrate and Maltodextrin and Optimization by Response Surface Methodology. Journal of Dispersion Science and Technology, 2015, 36, 274-283.	2.4	18
272	Preparation and characterization of 3D graphene oxide nanostructures embedded with nanocomplexes of chitosan- gum Arabic biopolymers. International Journal of Biological Macromolecules, 2020, 162, 163-174.	7.5	18
273	Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 6132-6152.	10.3	18
274	Practical application of nanoencapsulated nutraceuticals in real food products; a systematic review. Advances in Colloid and Interface Science, 2022, 305, 102690.	14.7	18
275	Release, Characterization, and Safety of Nanoencapsulated Food Ingredients. , 2017, , 401-453.		17
276	Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against <i>Listeria monocytogenes</i> in food products. Critical Reviews in Food Science and Nutrition, 2021, 61, 1241-1259.	10.3	17
277	Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization. International Journal of Biological Macromolecules, 2020, 164, 4046-4053.	7.5	17
278	Antioxidant Components of Brassica Vegetables Including Turnip and the Influence of Processing and Storage on their Anti-oxidative Properties. Current Medicinal Chemistry, 2019, 26, 4559-4572.	2.4	17
279	Improving the emulsifying properties of sodium caseinate through conjugation with soybean soluble polysaccharides. Food Chemistry, 2022, 377, 131987.	8.2	17
280	The direct and indirect effects of bioactive compounds against coronavirus. Food Frontiers, 2022, 3, 96-123.	7.4	17
281	Evaluation of performance and thermophysical properties of alumina nanofluid as a new heating medium for processing of food products. Journal of Food Process Engineering, 2017, 40, e12544.	2.9	16
282	Evaluation of quality attributes of grated carrot packaged within polypropylene-clay nanocomposites. Journal of Food Measurement and Characterization, 2021, 15, 3770-3781.	3.2	16
283	Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Advances in Colloid and Interface Science, 2022, 302, 102622.	14.7	16
284	Development of double layered emulsion droplets with pectin/β-lactoglobulin complex for bioactive delivery purposes. Journal of Molecular Liquids, 2017, 243, 144-150.	4.9	15
285	Nanoencapsulation of Phenolic Compounds and Antioxidants. , 2017, , 63-101.		15
286	Evaluation of changes in the quality of extracted oil from olive fruits stored under different temperatures and time intervals. Scientific Reports, 2019, 9, 19688.	3.3	15
287	Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. Journal of Food Process Engineering, 2018, 41, e12658.	2.9	14

Dynamic light scattering (DLS) of nanoencapsulated food ingredients. , 2020, , 191-211.

14

#	Article	IF	CITATIONS
289	Vitamin D3 cress seed mucilage -β-lactoglobulin nanocomplexes: Synthesis, characterization, encapsulation and simulated intestinal fluid in vitro release. Carbohydrate Polymers, 2021, 256, 117420.	10.2	14
290	Enhanced radiotherapy efficacy of breast cancer multi cellular tumor spheroids through in-situ fabricated chitosan-zinc oxide bio-nanocomposites as radio-sensitizing agents. International Journal of Pharmaceutics, 2021, 605, 120828.	5.2	14
291	Bioavailability and release of bioactive components from nanocapsules. , 2017, , 494-523.		13
292	Fabrication of Nanoemulsions by Microfluidization. , 2018, , 207-232.		13
293	Safety of Nanoemulsions and Their Regulatory Status. , 2018, , 613-628.		13
294	Nanoencapsulation of Agrochemicals, Fertilizers, and Pesticides for Improved Plant Production. , 2019, , 279-298.		13
295	Application of Lipid Nanocarriers for the Food Industry. Reference Series in Phytochemistry, 2019, , 623-665.	0.4	13
296	Improving the oxidative stability of sunflower seed kernels by edible biopolymeric coatings loaded with rosemary extract. Journal of Stored Products Research, 2020, 89, 101729.	2.6	13
297	X-ray diffraction (XRD) of nanoencapsulated food ingredients. , 2020, , 271-293.		13
298	Going deep inside bioactive-loaded nanocarriers through Nuclear Magnetic Resonance (NMR) spectroscopy. Trends in Food Science and Technology, 2020, 101, 198-212.	15.1	13
299	Nanoencapsulation of essential oils from industrial hemp (Cannabis sativa L.) by-products into alfalfa protein nanoparticles. Food Chemistry, 2022, 386, 132765.	8.2	13
300	Emerging product formation. , 2015, , 293-317.		12
301	An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients. , 2017, , 1-62.		12
302	Investigating the effect of lipase from Candida rugosa on the production of EPA and DHA concentrates from Kilka fish (Clupeonella cultiventris caspia). LWT - Food Science and Technology, 2018, 93, 534-541.	5.2	12
303	Encapsulation of food ingredients by nanostructured lipid carriers (NLCs). , 2019, , 217-270.		12
304	Nanoencapsulated bioactive components for active food packaging. , 2020, , 493-532.		12
305	Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications. Advances in Colloid and Interface Science, 2021, 298, 102552.	14.7	12
306	Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Critical Reviews in Food Science and Nutrition, 2023, 63, 8194-8225.	10.3	12

#	Article	IF	CITATIONS
307	Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 2022, 182, 114908.	5.2	12
308	Influence of the sunflower oil content, cooking temperature and cooking time on the physical and sensory properties of spreadable cheese analogues based on <scp>UF</scp> whiteâ€brined cheese. International Journal of Dairy Technology, 2016, 69, 576-584.	2.8	11
309	Nanoencapsulation of Vitamins. , 2017, , 145-181.		11
310	Are traditional small-scale screening methods reliable to predict pharmaceutical spray drying?. Pharmaceutical Development and Technology, 2019, 24, 915-925.	2.4	11
311	Nanostructures of chitosan for encapsulation of food ingredients. , 2019, , 381-418.		11
312	Decontamination of <i>Bacillus cereus</i> in cardamom (<i>Elettaria cardamomum</i>) seeds by infrared radiation and modeling of microbial inactivation through experimental models. Journal of Food Safety, 2020, 40, e12730.	2.3	11
313	Controlled release of nanoencapsulated food ingredients. , 2020, , 27-78.		11
314	Nanoencapsulation of bioactive food ingredients. , 2020, , 279-344.		11
315	Estimation of oxidative indices in the raw and roasted hazelnuts by accelerated shelf-life testing. Journal of Food Science and Technology, 2020, 57, 2433-2442.	2.8	11
316	Design and formulation of nano/micro-encapsulated natural bioactive compounds for food applications. , 2021, , 1-41.		11
317	Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. Food and Bioprocess Technology, 2022, 15, 2135-2154.	4.7	11
318	Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Advances in Colloid and Interface Science, 2022, 307, 102728.	14.7	11
319	Fabrication of Nanoemulsions by Ultrasonication. , 2018, , 233-285.		10
320	An overview of biopolymer nanostructures for encapsulation of food ingredients. , 2019, , 1-35.		10
321	Optical analysis of nanoencapsulated food ingredients by color measurement. , 2020, , 505-528.		10
322	Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Critical Reviews in Food Science and Nutrition, 2023, 63, 8939-8959.	10.3	10
323	Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Critical Reviews in Food Science and Nutrition, 2023, 63, 11351-11369.	10.3	10

Nanoencapsulation of Natural Food Colorants. , 2017, , 223-260.

#	Article	IF	CITATIONS
325	Encapsulation of food ingredients by nanophytosomes. , 2019, , 405-443.		9
326	Cinnamaldehyde nanoemulsions; physical stability, antibacterial properties/mechanisms, and biosafety. Journal of Food Measurement and Characterization, 2021, 15, 5326-5336.	3.2	9
327	The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Critical Reviews in Food Science and Nutrition, 2022, 62, 3208-3231.	10.3	9
328	Enhanced thermal stability of anthocyanins through natural polysaccharides from Angum gum and cress seed gum. Journal of Food Science, 2022, 87, 585-598.	3.1	9
329	Nanocapsule formation by cyclodextrins. , 2017, , 187-261.		8
330	Instrumental analysis and characterization of nanocapsules. , 2017, , 524-544.		8
331	Improving the shelf-life of food products by nano/micro-encapsulated ingredients. , 2019, , 159-200.		8
332	Improving the storage stability of tomato paste by the addition of encapsulated olive leaf phenolics and experimental growth modeling of A. flavus. International Journal of Food Microbiology, 2021, 338, 109018.	4.7	8
333	A systematic review and meta-analysis of the impacts of glyphosate on the reproductive hormones. Environmental Science and Pollution Research, 2022, 29, 62030-62041.	5.3	8
334	Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. Innovative Food Science and Emerging Technologies, 2021, 74, 102836.	5.6	8
335	Intelligent and Probabilistic Models for Evaluating the Release of Food Bioactive Ingredients from Carriers/Nanocarriers. Food and Bioprocess Technology, 2022, 15, 1495-1516.	4.7	8
336	Phenolic Content and Antioxidant Activity of <i>Falcaria vulgaris</i> Extracts. Analytical Chemistry Letters, 2012, 2, 159-170.	1.0	7
337	Nanoencapsulation of Minerals. , 2017, , 333-400.		7
338	Application of Lipid Nanocarriers for the Food Industry. Reference Series in Phytochemistry, 2018, , 1-43.	0.4	7
339	Physicochemical and nutritional properties of pomegranate juice powder produced by spray drying. Drying Technology, 2021, 39, 1941-1949.	3.1	7
340	Surface-decorated graphene oxide sheets with nanoparticles of chitosan-Arabic gum for the separation of bioactive compounds: A case study for adsorption of crocin from saffron extract. International Journal of Biological Macromolecules, 2021, 186, 1-12.	7.5	7
341	The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Critical Reviews in Food Science and Nutrition, 2023, 63, 1822-1845.	10.3	7
342	Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. Journal of Food Engineering, 2021, 307, 110644.	5.2	7

#	Article	IF	CITATIONS
343	Impact of drying methods on the quality of grey (Pleurotus sajor caju) and pink (Pleurotus djamor) oyster mushrooms. Journal of Food Measurement and Characterization, 2022, 16, 3331-3343.	3.2	7
344	Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129454.	4.7	7
345	Modeling corrosion trends in tinâ€free steel and tinplate cans containing tomato paste via adaptiveâ€networkâ€based fuzzy inference system. Journal of Food Process Engineering, 2017, 40, e12580.	2.9	6
346	Nanoencapsulation of food ingredients by dendrimers. , 2019, , 607-625.		6
347	Investigation of the histological and textural properties of chicken breast thawed by high voltage electric field. Journal of Food Process Engineering, 2020, 43, e13543.	2.9	6
348	<i>In vivo</i> assessments for predicting the bioavailability of nanoencapsulated food bioactives and the safety of nanomaterials. Critical Reviews in Food Science and Nutrition, 2022, 62, 7460-7478.	10.3	6
349	Comparison of binary cress seed mucilage (CSM)/β-lactoglobulin (BLG) and ternary CSG-BLG-Ca (calcium) complexes as emulsifiers: Interfacial behavior and freeze-thawing stability. Carbohydrate Polymers, 2021, 266, 118148.	10.2	6
350	Application of multi-criteria decision-making for optimizing the formulation of functional cookies containing different types of resistant starches: A physicochemical, organoleptic, in-vitro and in-vivo study. Food Chemistry, 2022, 393, 133376.	8.2	6
351	Preparation of soluble complex carriers from Aloe vera mucilage/gelatin for cinnamon essential oil: Characterization and antibacterial activity. Journal of Food Engineering, 2022, 334, 111160.	5.2	6
352	Bioavailability of Minerals (Ca, Mg, Zn, K, Mn, Se) in Food Products. , 2019, , 148-154.		5
353	An overview of lipid-based nanostructures for encapsulation of food ingredients. , 2019, , 1-34.		5
354	Application of nanoencapsulated silymarin to improve its antioxidant and hepatoprotective activities against carbon tetrachloride-induced oxidative stress in broiler chickens. Livestock Science, 2019, 228, 177-186.	1.6	5
355	Encapsulation of food ingredients by nanoliposomes. , 2019, , 347-404.		5
356	Nanostructures of starch for encapsulation of food ingredients. , 2019, , 419-462.		5
357	Production of food bioactive-loaded nanostructures by micro-/nanofluidics. , 2019, , 213-250.		5
358	Nanofluid thermal processing of food products. , 2020, , 39-71.		5
359	Differential scanning calorimetry (DSC) of nanoencapsulated food ingredients. , 2020, , 295-346.		5
360	Transmission electron microscopy (TEM) of nanoencapsulated food ingredients. , 2020, , 53-82.		5

2

#	Article	IF	CITATIONS
361	Design and Application of a Novel Dehumidifying System for a Fluidized Bed Dryer for the Drying of Canola Seeds. International Journal on Advanced Science, Engineering and Information Technology, 2011, 1, 46.	0.4	5
362	Nano-enabled agrochemicals for sustainable agriculture. , 2022, , 291-306.		5
363	Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater. Critical Reviews in Food Science and Nutrition, 2022, , 1-19.	10.3	5
364	Safety and regulatory issues ofÂnanocapsules. , 2017, , 545-590.		4
365	Nanoencapsulation of Flavors. , 2017, , 261-296.		4
366	Nanotubes of \hat{I}_{\pm} -lactalbumin for encapsulation of food ingredients. , 2019, , 101-124.		4
367	Nanostructures of gums for encapsulation of food ingredients. , 2019, , 521-578.		4
368	Production of food bioactive-loaded nanofibers by electrospinning. , 2019, , 31-105.		4
369	Release modeling of nanoencapsulated food ingredients by mechanistic models. , 2020, , 247-271.		4
370	Nanoadsorbents and nanoporous materials for the food industry. , 2020, , 107-159.		4
371	Nanoparticles/nanofibers for checking adulteration/spoilage of food products. , 2020, , 459-492.		4
372	Improving the bioavailability and bioactivity of garlic bioactive compounds <i>via</i> nanotechnology. Critical Reviews in Food Science and Nutrition, 2022, 62, 8467-8496.	10.3	4
373	Spray drying for the retention of food bioactive compounds and nutraceuticals – 150th anniversary of spray drying. Drying Technology, 2021, 39, 1773-1773.	3.1	4
374	Effect of corm age on the antioxidant, bactericidal and fungicidal activities of saffron (Crocus) Tj ETQq0 0 0 rg	gBT /Qvgrloch	k 19 Tf 50 22
375	Application of antimicrobial-loaded nano/microcarriers in different food products. , 2021, , 469-517.		4
376	Casein-based nanodelivery of olive leaf phenolics: Preparation, characterization and release study. Food Structure, 2021, 30, 100227.	4.5	4
377	Valorization of Saffron Tepals for the Green Synthesis of Silver Nanoparticles and Evaluation of Their Efficiency Against Foodborne Pathogens, Waste and Biomass Valorization, 2022, 13, 4417-4430	3.4	4

378The influence of storage time and temperature on the corrosion and pressure changes within tomato
paste cans with different filling rates. Journal of Food Engineering, 2018, 228, 32-37.5.23

#	Article	IF	CITATIONS
379	Nano-helices of amylose for encapsulation of food ingredients. , 2019, , 463-491.		3
380	An overview of specialized equipment for nanoencapsulation of food ingredients. , 2019, , 1-30.		3
381	Influence of Food Processing Operations on Vitamins. , 2019, , 129-139.		3
382	Release modeling of nanoencapsulated food ingredients by empirical and semiempirical models. , 2020, , 211-246.		3
383	Fourier transform infrared (FT-IR) spectroscopy of nanoencapsulated food ingredients. , 2020, , 347-410.		3
384	Introduction to characterization of nanoencapsulated food ingredients. , 2020, , 1-50.		3
385	Salt, spices, and seasonings formulated with nano/microencapsulated ingredients. , 2021, , 435-467.		3
386	Emerging product formation. , 2021, , 257-275.		3
387	Application of nano/microencapsulated ingredients in chewing gum. , 2021, , 345-386.		3
388	Effect of Co-Encapsulated Natural Antioxidants with Modified Starch on the Oxidative Stability of β-Carotene Loaded within Nanoemulsions. Applied Sciences (Switzerland), 2022, 12, 1070.	2.5	3
389	Ultrasound-assisted extraction of saffron bioactive compounds; separation of crocins, picrocrocin, and safranal optimized by artificial bee colony. Ultrasonics Sonochemistry, 2022, 86, 105971.	8.2	3
390	Encapsulation of food ingredients by double nanoemulsions. , 2019, , 89-128.		2
391	Nanostructures of silk fibroin for encapsulation of food ingredients. , 2019, , 305-331.		2
392	Production of food bioactive-loaded nanostructures by ultrasonication. , 2019, , 391-448.		2
393	Interrogation of a new inline multi-bin cyclone for sorting of produced powders of a lab-scale spray dryer. Powder Technology, 2020, 373, 590-598.	4.2	2
394	Reinforced nanocomposites for food packaging. , 2020, , 533-574.		2
395	Green synthesis of metal nanoparticles by plant extracts and biopolymers. , 2020, , 257-278.		2
396	Surface composition of nanoencapsulated food ingredients by X-ray photoelectron spectroscopy (XPS). , 2020, , 243-268.		2

#	Article	IF	CITATIONS
397	Confocal laser scanning microscopy (CLSM) of nanoencapsulated food ingredients. , 2020, , 131-158.		2
398	Scanning electron microscopy (SEM) of nanoencapsulated food ingredients. , 2020, , 83-130.		2
399	Possible health risks associated with nanostructures in food. , 2021, , 31-118.		2
400	Complexation of cress seed mucilage and β-lactoglobulin; optimization through response surface methodology and adaptive neuro-fuzzy inference system (ANFIS). Chemometrics and Intelligent Laboratory Systems, 2022, 228, 104615.	3.5	2
401	Importance of release and bioavailability studies for nanoencapsulated food ingredients. , 2020, , 1-24.		1
402	Biological fate of nanoencapsulated food bioactives. , 2020, , 351-393.		1
403	In vivo assays for evaluating the release of nanoencapsulated food ingredients. , 2020, , 179-207.		1
404	Fundamentals of food nanotechnology. , 2020, , 1-35.		1
405	Characterization and analysis of nanomaterials in foods. , 2020, , 577-653.		1
406	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	7.4	1
407	A Brief Overview of Cancer, Its Mechanisms, and Prevention Methods. Food Bioactive Ingredients, 2021, , 3-10.	0.4	1
408	Regulatory principles on food nanoparticles legislated by Asian and Oceanian countries. , 2021, , 201-238.		1
409	Regulatory principles on food nano-particles legislated by European countries. , 2021, , 177-200.		1
410	Introduction to unit operations and process description in the food industry. , 2021, , 1-27.		1
411	Extraction, processing, and encapsulation of food bioactive compounds. Food Chemistry, 2022, 381, 132117.	8.2	1
412	<i>Spirulina platensis</i> Extract Nanoliposomes: Preparation, Characterization, and Application to White Cheese. Journal of AOAC INTERNATIONAL, 2021, , .	1.5	1
413	Application of Nanoliposomes Containing Nisin and Crocin in Milk. Advanced Pharmaceutical Bulletin, 2021, , .	1.4	1
414	Encapsulation of food ingredients by Pickering nanoemulsions. , 2019, , 151-176.		0

#	Article	IF	CITATIONS
415	In vitro assays for evaluating the release of nanoencapsulated food ingredients. , 2020, , 123-177.		0
416	Antioxidant activity analysis of nanoencapsulated food ingredients. , 2020, , 617-664.		0
417	Rheological analysis of solid-like nanoencapsulated food ingredients by rheometers. , 2020, , 547-583.		0
418	Nuclear magnetic resonance (NMR) spectroscopy of nanoencapsulated food ingredients. , 2020, , 411-458.		0
419	Spectroscopic and chromatographic analyses of nanoencapsulated food ingredients. , 2020, , 585-615.		0
420	Safety and toxicity aspects of food nanoparticles. , 2021, , 1-29.		0
421	General mathematical and engineering principles in unit operations of food processing. , 2021, , 403-417.		0
422	Fruits and Vegetables in Cancer. Food Bioactive Ingredients, 2021, , 201-257.	0.4	0
423	Covalent and Electrostatic Protein-Polysaccharide Systems for Encapsulation of Nutraceuticals. , 2021, , 818-831.		0
424	In vivo assays for predicting the safety of food-based nanomaterials. , 2021, , 143-176.		0
425	Evaluating the performance of artificial neural networks (ANNs) for predicting the physical, rheological, and colorimetric properties of chitosan nanoparticles (CSNPs). Journal of Food Science and Technology (Iran), 2021, 18, 77-90.	0.1	0
426	Enrichment of biscuits with protein to improve health effects. Journal of Food Science and Technology (Iran), 2021, 18, 377-387.	0.1	0
427	Spray Drying Encapsulation of Anthocyanins. , 2021, , 97-121.		0
428	Saffron (Crocins) Against Cancer. Food Bioactive Ingredients, 2021, , 323-365.	0.4	0
429	Encapsulation of Essential Oils. , 2021, , 115-135.		0
430	Evaluation of Degradation Kinetic of Tomato Paste Color in Heat Processing and Modeling of These Changes by Response Surface Methodology. TulÄ«d Va FarÄvarÄ«-i Maá,¥a¹£Å«lÄŧ-i Zirĥī Va BÄghÄ«, 2015, 5,	43-57.	0
431	Optimization of ethanol-assisted aqueous oil extraction from Cicadatra querula. Journal of Food Measurement and Characterization, 2022, 16, 1426.	3.2	0