Jeffery A Mcgarvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898645/publications.pdf Version: 2024-02-01

687363 580821 31 668 13 25 citations g-index h-index papers 31 31 31 879 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. Journal of Applied Microbiology, 2021, 131, 1564-1577.	3.1	18
2	Complete Genome Sequence of Pantoea agglomerans ASB05 Using Illumina and PacBio Sequencing. Microbiology Resource Announcements, 2021, 10, e0050121.	0.6	3
3	Complete Genome Sequence of Enterobacter asburiae Strain AEB30, Determined Using Illumina and PacBio Sequencing. Microbiology Resource Announcements, 2021, 10, e0056221.	0.6	2
4	Role of soil in the regulation of human and plant pathogens: soils' contributions to people. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200179.	4.0	30
5	A rapid and sensitive lateral flow immunoassay (LFIA) for the detection of gluten in foods. Food Chemistry, 2021, 355, 129514.	8.2	21
6	<i>Bacillus amyloliquefaciens</i> ALB65 Inhibits the Growth of <i>Listeria monocytogenes</i> on Cantaloupe Melons. Applied and Environmental Microbiology, 2020, 87, .	3.1	6
7	Complete Genomic Sequences of Three Salmonella enterica subsp. <i>enterica</i> Serovar Muenchen Strains from an Orchard in San Joaquin County, California. Microbiology Resource Announcements, 2020, 9, .	0.6	0
8	Dosageâ€dependent effects of monensin on the rumen microbiota of lactating dairy cattle. MicrobiologyOpen, 2019, 8, e783.	3.0	6
9	Use of Phyllosphere-associated Lactic Acid Bacteria as Biocontrol Agents to Reduce Salmonella enterica Serovar Poona Growth on Cantaloupe Melons. Journal of Food Protection, 2019, 82, 2148-2153.	1.7	8
10	Bacterial population dynamics after foliar fertilization of almond leaves. Journal of Applied Microbiology, 2019, 126, 945-953.	3.1	5
11	Enhanced detection of infectious prions by direct ELISA from the brains of asymptomatic animals using DRM2-118 monoclonal antibody and Gdn-HCl. Journal of Immunological Methods, 2018, 456, 38-43.	1.4	1
12	Complete Genome Sequence of Lactococcus lactis subsp . lactis Strain 14B4, Which Inhibits the Growth of Salmonella enterica Serotype Poona In Vitro. Microbiology Resource Announcements, 2018, 7, .	0.6	2
13	Complete Genome Sequences of Three Bacillus amyloliquefaciens Strains That Inhibit the Growth of Listeria monocytogenes <i>In Vitro</i> . Genome Announcements, 2018, 6, .	0.8	3
14	Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry. Molecular Immunology, 2017, 90, 287-294.	2.2	13
15	Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins, 2016, 8, 13.	3.4	18
16	Bacterial populations on the surfaces of organic and conventionally grown almond drupes. Journal of Applied Microbiology, 2015, 119, 529-538.	3.1	6
17	Detection of Shiga Toxins by Lateral Flow Assay. Toxins, 2015, 7, 1163-1173.	3.4	26
18	Affinity Purification of Antibodies. Methods in Molecular Biology, 2015, 1318, 29-41.	0.9	12

JEFFERY A MCGARVEY

#	Article	IF	CITATIONS
19	Bacterial population structure and dynamics during the development of almond drupes. Journal of Applied Microbiology, 2014, 116, 1543-1552.	3.1	8
20	Bacterial population dynamics during the ensiling of <i>Medicago sativa</i> (alfalfa) and subsequent exposure to air. Journal of Applied Microbiology, 2013, 114, 1661-1670.	3.1	138
21	Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. Journal of Immunological Methods, 2012, 380, 23-29.	1.4	66
22	Effects of sodium bisulfate on the bacterial population structure of dairy cow waste. Journal of Applied Microbiology, 2011, 111, 319-328.	3.1	1
23	Effect of dietary monensin on the bacterial population structure of dairy cattle colonic contents. Applied Microbiology and Biotechnology, 2010, 85, 1947-1952.	3.6	15
24	Greenhouse Gas, Animal Performance, and Bacterial Population Structure Responses to Dietary Monensin Fed to Dairy Cows. Journal of Environmental Quality, 2010, 39, 106-114.	2.0	39
25	Acidification of calf bedding reduces fly development and bacterial abundance. Journal of Dairy Science, 2010, 93, 1059-1064.	3.4	21
26	Epitope Characterization and Variable Region Sequence of F1-40, a High-Affinity Monoclonal Antibody to Botulinum Neurotoxin Type A (Hall Strain). PLoS ONE, 2009, 4, e4924.	2.5	9
27	Identification and functional characterization of the iron-dependent regulator (IdeR) of Mycobacterium avium subsp. paratuberculosis. Microbiology (United Kingdom), 2009, 155, 3683-3690.	1.8	31
28	Induction of purple sulfur bacterial growth in dairy wastewater lagoons by circulation. Letters in Applied Microbiology, 2009, 49, 427-433.	2.2	7
29	Bacterial Population Dynamics in Dairy Waste during Aerobic and Anaerobic Treatment and Subsequent Storage. Applied and Environmental Microbiology, 2007, 73, 193-202.	3.1	54
30	Comparison of bacterial populations and chemical composition of dairy wastewater held in circulated and stagnant lagoons. Journal of Applied Microbiology, 2005, 99, 867-877.	3.1	26
31	Identification of Bacterial Populations in Dairy Wastewaters by Use of 16S rRNA Gene Sequences and Other Genetic Markers. Applied and Environmental Microbiology, 2004, 70, 4267-4275.	3.1	73