List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8986283/publications.pdf

Version: 2024-02-01

YULLA C MOURZINA

#	Article	IF	CITATIONS
1	Intrinsic Multienzyme-like Activities of the Nanoparticles of Mn and Fe Cyano-Bridged Assemblies. Nanomaterials, 2022, 12, 2095.	1.9	4
2	Synthesizing Electrodes Into Electrochemical Sensor Systems. Frontiers in Chemistry, 2021, 9, 641674.	1.8	3
3	Horseradish Peroxidase-Based Biosensors with Different Nanotransducers for the Determination of Hydrogen Peroxide. Journal of Analytical Chemistry, 2021, 76, 510-517.	0.4	3
4	Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sensors and Actuators B: Chemical, 2020, 321, 128437.	4.0	25
5	Electrochemical properties and biomimetic activity of water-soluble meso-substituted Mn(III) porphyrin complexes in the electrocatalytic reduction of hydrogen peroxide. Journal of Electroanalytical Chemistry, 2020, 866, 114159.	1.9	18
6	Photoresponsive Porphyrin Nanotubes of Meso-tetra(4-Sulfonatophenyl)Porphyrin and Sn(IV) meso-tetra(4-pyridyl)porphyrin. Frontiers in Chemistry, 2019, 7, 351.	1.8	14
7	Self-assembly and photoconductivity of binary porphyrin nanostructures of meso -tetrakis(4-sulfonatophenyl)porphine and Co(III) meso -tetra(4-pyridyl)porphine chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 172-178.	2.3	8
8	Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture. Journal of Solid State Electrochemistry, 2018, 22, 1023-1035.	1.2	25
9	Multisensor Systems by Electrochemical Nanowire Assembly for the Analysis of Aqueous Solutions. Frontiers in Chemistry, 2018, 6, 256.	1.8	19
10	Nonenzymatic determination of glucose on electrodes prepared by directed electrochemical nanowire assembly (DENA). Journal of Analytical Chemistry, 2017, 72, 371-374.	0.4	14
11	Towards stabilization of the potential response of Mn(III) tetraphenylporphyrin-based solid-state electrodes with selectivity for salicylate ions. Journal of Solid State Electrochemistry, 2017, 21, 2269-2279.	1.2	8
12	On "resistance overpotential―caused by a potential drop along the ultrathin high aspect ratio gold nanowire electrodes in cyclic voltammetry. Journal of Solid State Electrochemistry, 2016, 20, 3359-3365.	1.2	11
13	Chemiresistors based on ultrathin gold nanowires for sensing halides, pyridine and dopamine. Sensors and Actuators B: Chemical, 2016, 232, 420-427.	4.0	31
14	Influence of Meso-Substitution of the Porphyrin Ring on Enhanced Hydrogen Evolution in a Photochemical System. Journal of Physical Chemistry C, 2016, 120, 13873-13890.	1.5	38
15	A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein's salt. A bioelectrochemical sensor for glucose determination. Bioelectrochemistry, 2015, 105, 34-43.	2.4	33
16	Electrochemically Induced Ostwald Ripening in Au/TiO ₂ Nanocomposite. Journal of Physical Chemistry C, 2015, 119, 10336-10344.	1.5	15
17	Self-assembly of platinum nanoparticles and coordination-driven assembly with porphyrin. RSC Advances, 2015, 5, 86934-86940.	1.7	2
18	New membrane material for thallium (I)-selective sensors based on arsenic sulfide glasses. Sensors and Actuators B: Chemical, 2015, 207, 940-944.	4.0	8

#	Article	IF	CITATIONS
19	Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors and Actuators B: Chemical, 2015, 207, 1045-1052.	4.0	28
20	Activation of gold nanostructures with Meerwein's salt. Mendeleev Communications, 2014, 24, 145-146.	0.6	4
21	Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosensors and Bioelectronics, 2014, 57, 54-58.	5.3	55
22	Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors. Nanoscale, 2014, 6, 5146-5155.	2.8	27
23	Oleylamine-Stabilized Gold Nanostructures for Bioelectronic Assembly. Direct Electrochemistry of Cytochrome <i>c</i> . Journal of Physical Chemistry C, 2013, 117, 13944-13951.	1.5	26
24	Features of Transport in Ultrathin Gold Nanowire Structures. Small, 2013, 9, 846-852.	5.2	44
25	Variable resistor made by repeated steps of epitaxial deposition and lithographic structuring of oxide layers by using wet chemical etchants. Thin Solid Films, 2013, 533, 43-47.	0.8	12
26	Ultrathin Nanowires: Features of Transport in Ultrathin Gold Nanowire Structures (Small 6/2013). Small, 2013, 9, 960-960.	5.2	0
27	<i>In situ</i> fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors. Nanotechnology, 2012, 23, 485301.	1.3	3
28	Sensing small neurotransmitter–enzyme interaction with nanoporous gated ion-sensitive field effect transistors. Biosensors and Bioelectronics, 2012, 31, 157-163.	5.3	11
29	Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology, 2011, 22, 265104.	1.3	98
30	Large-Scale Patterning of Gold Nanopillars in a Porous Anodic Alumina Template by Replicating Gold Structures on a Titanium Barrier. Journal of Nanoscience and Nanotechnology, 2011, 11, 1293-1296.	0.9	7
31	The Role of Oxidative Etching in the Synthesis of Ultrathin Singleâ€Crystalline Au Nanowires. Chemistry - A European Journal, 2011, 17, 9503-9507.	1.7	22
32	Synthesis and Structural Characterization of Ultra-thin Flexible Au Nanowires. Materials Research Society Symposia Proceedings, 2009, 1206, 162901.	0.1	1
33	Determination of the Stability Constant of the Intermediate Complex during the Synthesis of Au Nanoparticles Using Aurous Halide. Journal of Physical Chemistry C, 2009, 113, 20143-20147.	1.5	13
34	Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization. Electrochimica Acta, 2008, 53, 6265-6272.	2.6	57
35	Spatially resolved non-invasive chemical stimulation for modulation of signalling in reconstructed neuronal networks. Journal of the Royal Society Interface, 2006, 3, 333-343.	1.5	7
36	Suspended Nanoporous Membranes as Interfaces for Neuronal Biohybrid Systems. Nano Letters, 2006, 6, 453-457.	4.5	58

#	Article	IF	CITATIONS
37	Electrophoretic separations of neuromediators on microfluidic devices. Talanta, 2006, 70, 489-498.	2.9	18
38	Fabrication of Large-Scale Patterned Gold-Nanopillar Arrays on a Silicon Substrate Using Imprinted Porous Alumina Templates. Small, 2006, 2, 1256-1260.	5.2	26
39	Patterning chemical stimulation of reconstructed neuronal networks. Analytica Chimica Acta, 2006, 575, 281-289.	2.6	25
40	Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip. Electrophoresis, 2005, 26, 1849-1860.	1.3	32
41	The evaporated metal masks for chemical glass etching for BioMEMS. Microsystem Technologies, 2005, 11, 135-140.	1.2	30
42	The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods, 2005, 37, 94-102.	1.9	133
43	Inorganic Thin-film Sensor Membranes with PLD-prepared Chalcogenide Glasses: Challenges and Implementation. Sensors, 2004, 4, 156-162.	2.1	27
44	Immobilization of Urease and Cholinesterase on the Surface of Semiconductor Transducer for the Development of Light-Addressable Potentiometric Sensors. Mikrochimica Acta, 2004, 144, 41-50.	2.5	35
45	Impedance effect of an ion-sensitive membrane: characterisation of an EMIS sensor by impedance spectroscopy, capacitance–voltage and constant–capacitance method. Sensors and Actuators B: Chemical, 2004, 103, 423-428.	4.0	48
46	Laser-scanned silicon transducer (LSST) as a multisensor system. Sensors and Actuators B: Chemical, 2004, 103, 457-462.	4.0	16
47	K+-selective field-effect sensors as transducers for bioelectronic applications. Electrochimica Acta, 2003, 48, 3333-3339.	2.6	43
48	Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions. Sensors and Actuators B: Chemical, 2003, 91, 32-38.	4.0	40
49	Portable light-addressable potentiometric sensor (LAPS) for multisensor applications. Sensors and Actuators B: Chemical, 2003, 95, 352-356.	4.0	71
50	The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multi-component analysis. Talanta, 2003, 59, 785-795.	2.9	26
51	A First Step Towards a Microfabricated Thin-Film Sensor Array on the Basis of Chalcogenide Glass Materials. Sensors, 2002, 2, 356-365.	2.1	33
52	Photocurable membranes for ion-selective light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 2002, 85, 79-85.	4.0	30
53	Lithium sensor based on the laser scanning semiconductor transducer. Analytica Chimica Acta, 2002, 459, 1-9.	2.6	22
54	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 351-356.	0.1	3

#	Article	IF	CITATIONS
55	Multicomponent thin films for electrochemical sensor applications prepared by pulsed laser deposition. Sensors and Actuators B: Chemical, 2001, 76, 327-330.	4.0	32
56	Can pulsed laser deposition serve as an advanced technique in fabricating chemical sensors?. Sensors and Actuators B: Chemical, 2001, 78, 273-278.	4.0	56
57	Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sensors and Actuators B: Chemical, 2001, 80, 136-140.	4.0	65
58	Pulsed Laser Deposition - An Innovative Technique for Preparing Inorganic Thin Films. Electroanalysis, 2001, 13, 727-732.	1.5	34
59	Copper, cadmium and thallium thin film sensors based on chalcogenide glasses. Analytica Chimica Acta, 2001, 433, 103-110.	2.6	51
60	Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochimica Acta, 2001, 47, 251-258.	2.6	88
61	A new thin-film Pb microsensor based on chalcogenide glasses. Sensors and Actuators B: Chemical, 2000, 71, 13-18.	4.0	39
62	Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique. Applied Physics A: Materials Science and Processing, 1999, 69, S803-S805.	1.1	24