Jun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ion Transport in pH-Regulated Double-Barreled Nanopores. Analytical Chemistry, 2022, 94, 5642-5650.	6.5	3
2	Microsphere-Based Microfluidic Device for Plasma Separation and Potential Biochemistry Analysis Applications. Micromachines, 2021, 12, 487.	2.9	3
3	Formation of Giant Lipid Vesicles in the Presence of Nonelectrolytes—Glucose, Sucrose, Sorbitol and Ethanol. Processes, 2021, 9, 945.	2.8	2
4	Multipole plasmon resonance in gold nanobipyramid: Effects of tip shape and size. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 412, 127577.	2.1	6
5	Mechanism study of how lipid vesicle electroformation is suppressed by the presence of sodium chloride. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111951.	5.0	2
6	Applications of Microfluidics in Liquid Crystal-Based Biosensors. Biosensors, 2021, 11, 385.	4.7	21
7	Dielectrophoretic Separation of Particles Using Microfluidic Chip with Composite Three-Dimensional Electrode. Micromachines, 2020, 11, 700.	2.9	18
8	A Continuous Cell Separation and Collection Approach on a Microfilter and Negative Dielectrophoresis Combined Chip. Micromachines, 2020, 11, 1037.	2.9	1
9	Fabrication and performance of monodisperse liquid crystal droplet-based microchips for the on-chip detection of bile acids. Microchemical Journal, 2020, 157, 105057.	4.5	15
10	Multi-channel surface plasmon resonance biosensor using prism-based wavelength interrogation. Optics Express, 2020, 28, 14007.	3.4	15
11	Microchannel with Stacked Microbeads for Separation of Plasma from Whole Blood. Chinese Journal of Analytical Chemistry, 2019, 47, 661-668.	1.7	9
12	Multi-Stage Particle Separation based on Microstructure Filtration and Dielectrophoresis. Micromachines, 2019, 10, 103.	2.9	17
13	Sodiumâ€ion Batteries: O3â€Type Layered Niâ€Rich Oxide: A Highâ€Capacity and Superiorâ€Rate Cathode for Sodiumâ€ion Batteries (Small 52/2019). Small, 2019, 15, 1970282.	10.0	5
14	Electroformation and collection of giant liposomes on an integrated microchip. Chinese Chemical Letters, 2019, 30, 353-358.	9.0	6
15	Preparation of giant lipid vesicles with controllable sizes by a modified hydrophilic polydimethylsiloxane microarray chip. Journal of Colloid and Interface Science, 2019, 536, 53-61.	9.4	7
16	Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomedical Optics Express, 2019, 10, 6073.	2.9	40
17	Preparation of Poly(vinyl alcohol) Microspheres Based on Droplet Microfluidic Technology. Chinese Journal of Analytical Chemistry, 2018, 46, 1269-1274.	1.7	14
18	lon concentration effect (Na+ and Clâ^') on lipid vesicle formation. Colloids and Surfaces B: Biointerfaces, 2017, 155, 287-293.	5.0	10

Jun Yang

#	Article	IF	CITATIONS
19	Simultaneous assay of platelet adhesion at multiple shear rates within a single microfluidic channel. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	0
20	Controllable cell electroporation using microcavity electrodes. Sensors and Actuators B: Chemical, 2017, 240, 434-442.	7.8	9
21	Design and Performance of a Portable and Multichannel SPR Device. Sensors, 2017, 17, 1435.	3.8	15
22	Frequency-Dependent Electroformation of Giant Unilamellar Vesicles in 3D and 2D Microelectrode Systems. Micromachines, 2017, 8, 24.	2.9	6
23	Electro-Deformation of Fused Cells in a Microfluidic Array Device. Micromachines, 2016, 7, 204.	2.9	5
24	Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips. Colloids and Surfaces B: Biointerfaces, 2016, 140, 560-566.	5.0	20
25	Study of micro-gap reactors for pulsed electric field sterilization. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229, 191-195.	0.1	0
26	A Cell Electrofusion Chip for Somatic Cells Reprogramming. PLoS ONE, 2015, 10, e0131966.	2.5	12
27	Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device. Colloids and Surfaces B: Biointerfaces, 2015, 128, 287-295.	5.0	7
28	Microfluidic Chips for Preparation and Collection of Giant Vesicles. Chinese Journal of Analytical Chemistry, 2015, 43, 1113-1117.	1.7	1
29	A cell electrofusion microfluidic chip with micro-cavity microelectrode array. Microfluidics and Nanofluidics, 2013, 15, 151-160.	2.2	13
30	Electroformation and electrofusion of giant vesicles in a microfluidic device. Colloids and Surfaces B: Biointerfaces, 2013, 110, 81-87.	5.0	19
31	Cell electrofusion in microfluidic devices: A review. Sensors and Actuators B: Chemical, 2013, 178, 63-85.	7.8	54
32	Impact of Temperature Profile on Growth and Proliferation of Myoblasts on ITO Glass Chips. Chinese Journal of Analytical Chemistry, 2013, 41, 1171-1176.	1.7	5
33	Construction of microscale structures in enclosed microfluidic networks by using a magnetic beads based method. Analytica Chimica Acta, 2013, 792, 66-71.	5.4	5
34	Lowâ€Voltage Pulsed Electric Field Sterilization on a Microfluidic Chip. Electroanalysis, 2013, 25, 1301-1309.	2.9	8
35	Development and Prospect of Cell-electrofusion Chip Technology. Chinese Journal of Analytical Chemistry, 2012, 40, 331-338.	1.7	3
36	A cell electrofusion microfluidic chip using discrete coplanar vertical sidewall microelectrodes. Electrophoresis, 2012, 33, 1980-1986.	2.4	14

Jun Yang

#	Article	IF	CITATIONS
37	Study of Liposome Electrofusion on Microelectrode Array Chip. Chinese Journal of Analytical Chemistry, 2012, 40, 551-555.	1.7	1
38	Somatic and stem cell pairing and fusion using a microfluidic array device. Microfluidics and Nanofluidics, 2011, 11, 633-641.	2.2	18
39	A highâ€throughput dielectrophoresisâ€based cell electrofusion microfluidic device. Electrophoresis, 2011, 32, 2488-2495.	2.4	34
40	A cell electrofusion microfluidic device integrated with 3D thin-film microelectrode arrays. Biomicrofluidics, 2011, 5, 34121-3412112.	2.4	36
41	(Advanced Biomaterials 7/2010). Advanced Engineering Materials, 2010, 12, n/a-n/a.	3.5	0
42	Chipâ€Based Cell Electrofusion. Advanced Engineering Materials, 2010, 12, B398.	3.5	16
43	Polyimide Membrane Based Cell-electrofusion Chip. Chinese Journal of Analytical Chemistry, 2009, 37, 1247-1252.	1.7	19
44	Microfluidic pool structure for cell docking and rapid mixing. Analytica Chimica Acta, 2009, 634, 61-67.	5.4	8
45	Study of high-throughput cell electrofusion in a microelectrode-array chip. Microfluidics and Nanofluidics, 2008, 5, 669-675.	2.2	34
46	Electric Field Simulation of High-throughput Cell Electrofusion Chip. Chinese Journal of Analytical Chemistry, 2008, 36, 593-598.	1.7	15
47	Differential Analysis of Human Leukocytes by Dielectrophoretic Field-Flow-Fractionation. Biophysical	0.5	203